{"title":"Upcycling Textile White Mud to Fabricate MIL-125-Derived Amorphous TiO2@C: Effective Electrocatalyst for Cathodic Reduction of Antibiotics","authors":"Jinmei Zhu, Xiaofei Wen, Yuanhui Feng, Shuaibing Ren, Zimo Lou, Jiansheng Li","doi":"10.3390/separations10120580","DOIUrl":null,"url":null,"abstract":"Cathodic reduction is a green and promising remediation strategy for reducing the antibacterial activity of antibiotic contaminants and increasing their biodegradability. However, the lack of cost-effective electrocatalysts has restricted its application. In this study, we upcycled textile white mud by separating 1,4-dicarboxybenzene (BDC) and fabricating MIL-125(Ti)-derived amorphous TiO2@C (TiO2@C-W) as a functional electrocatalyst. The separated BDC from white mud shows lower crystallinity than BDC chemicals, but the resulting TiO2@C-W features a much higher degree of oxygen vacancies and a 25-fold higher specific surface area than that of TiO2@C derived from BDC chemicals. With florfenicol (FLO) as a probe, TiO2@C-W exhibits similar cathodic reductive activity (0.017 min−1) as commercial Pd(3 wt.%)/C (0.018 min−1) does, which was 1.4 and 3.7 times higher than that of oxygen vacancy-engineered TiO2 and TiO2@C, respectively. The as-fabricated TiO2@C-W could not easily remove FLO via the oxygen reduction reaction-based pathway with the applied bias for cathodic reduction. Though the activity of TiO2@C-W undergoes a slight decline with continuous running, more than 80% of 20 mg L−1 FLO can still be reduced in the eighth run. Water chemistry studies suggest that a lower initial solution pH boosts the cathodic reduction process, while common co-existing anions such as Cl−, NO3−, HCO3−, and SO32− show a limited negative impact. Finally, TiO2@C-W shows reductive activity against several representative antibiotics, including nitrofurazone, metronidazole, and levofloxacin, clarifying its potential scope of application for antibiotics (e.g., molecules with structures like furan rings, nitro groups, and halogens). This study couples the upcycling of textile white mud with the remediation of antibiotics by developing functional electrocatalysts, and offers new insights for converting wastes from the printing and dyeing industry into value-added products.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"120 ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations10120580","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cathodic reduction is a green and promising remediation strategy for reducing the antibacterial activity of antibiotic contaminants and increasing their biodegradability. However, the lack of cost-effective electrocatalysts has restricted its application. In this study, we upcycled textile white mud by separating 1,4-dicarboxybenzene (BDC) and fabricating MIL-125(Ti)-derived amorphous TiO2@C (TiO2@C-W) as a functional electrocatalyst. The separated BDC from white mud shows lower crystallinity than BDC chemicals, but the resulting TiO2@C-W features a much higher degree of oxygen vacancies and a 25-fold higher specific surface area than that of TiO2@C derived from BDC chemicals. With florfenicol (FLO) as a probe, TiO2@C-W exhibits similar cathodic reductive activity (0.017 min−1) as commercial Pd(3 wt.%)/C (0.018 min−1) does, which was 1.4 and 3.7 times higher than that of oxygen vacancy-engineered TiO2 and TiO2@C, respectively. The as-fabricated TiO2@C-W could not easily remove FLO via the oxygen reduction reaction-based pathway with the applied bias for cathodic reduction. Though the activity of TiO2@C-W undergoes a slight decline with continuous running, more than 80% of 20 mg L−1 FLO can still be reduced in the eighth run. Water chemistry studies suggest that a lower initial solution pH boosts the cathodic reduction process, while common co-existing anions such as Cl−, NO3−, HCO3−, and SO32− show a limited negative impact. Finally, TiO2@C-W shows reductive activity against several representative antibiotics, including nitrofurazone, metronidazole, and levofloxacin, clarifying its potential scope of application for antibiotics (e.g., molecules with structures like furan rings, nitro groups, and halogens). This study couples the upcycling of textile white mud with the remediation of antibiotics by developing functional electrocatalysts, and offers new insights for converting wastes from the printing and dyeing industry into value-added products.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization