Development and internal validation of machine learning-based models and external validation of existing risk scores for outcome prediction in patients with ischemic stroke

Daniel Axford, Ferdous Sohel, V. Abedi, Ye Zhu, R. Zand, Ebrahim Barkoudah, Troy Krupica, Kingsley Iheasirim, U. M. Sharma, S. Dugani, Paul Y Takahashi, S. Bhagra, Mohammad H Murad, Gustavo Saposnik, M. Yousufuddin
{"title":"Development and internal validation of machine learning-based models and external validation of existing risk scores for outcome prediction in patients with ischemic stroke","authors":"Daniel Axford, Ferdous Sohel, V. Abedi, Ye Zhu, R. Zand, Ebrahim Barkoudah, Troy Krupica, Kingsley Iheasirim, U. M. Sharma, S. Dugani, Paul Y Takahashi, S. Bhagra, Mohammad H Murad, Gustavo Saposnik, M. Yousufuddin","doi":"10.1093/ehjdh/ztad073","DOIUrl":null,"url":null,"abstract":"We developed new ML models and externally validated existing statistical models (ischemic stroke predictive risk score [iScore] and totaled health risks in vascular events [THRIVE] scores) for predicting the composite of recurrent stroke or all-cause mortality at 90 days and at 3 years after hospitalization for first AIS. In adults hospitalized with AIS from January 2005 to November 2016, with follow-up until November 2019, we developed three ML models (random forest [RF], support vector machine [SVM], and extreme gradient boosting [XGBOOST]) and externally validated the iScore and THRIVE scores for predicting the composite outcomes after AIS hospitalization, using data from 721 patients and 90 potential predictor variables. At 90 days and 3 years, 11% and 34% of patients, respectively, reached the composite outcome. For the 90-day prediction, the area under the receiver operating characteristic curves (AUC) was 0.779 for RF, 0.771 for SVM, 0.772 for XGBOOST, 0.720 for iScore, and 0.664 for THRIVE. For 3-year prediction the AUC was 0.743 for RF, 0.777 for SVM, 0.773 for XGBOOST, 0.710 for iScore, and 0.675 for THRIVE. The study provided three ML-based predictive models that achieved good discrimination and clinical usefulness in outcome prediction after AIS and broadened the application of the iScore and THRIVE scoring system for long-term outcome prediction. Our findings warrant comparative analyses of ML and existing statistical method-based risk prediction tools for outcome prediction after AIS in new datasets.","PeriodicalId":508387,"journal":{"name":"European Heart Journal - Digital Health","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Heart Journal - Digital Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztad073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We developed new ML models and externally validated existing statistical models (ischemic stroke predictive risk score [iScore] and totaled health risks in vascular events [THRIVE] scores) for predicting the composite of recurrent stroke or all-cause mortality at 90 days and at 3 years after hospitalization for first AIS. In adults hospitalized with AIS from January 2005 to November 2016, with follow-up until November 2019, we developed three ML models (random forest [RF], support vector machine [SVM], and extreme gradient boosting [XGBOOST]) and externally validated the iScore and THRIVE scores for predicting the composite outcomes after AIS hospitalization, using data from 721 patients and 90 potential predictor variables. At 90 days and 3 years, 11% and 34% of patients, respectively, reached the composite outcome. For the 90-day prediction, the area under the receiver operating characteristic curves (AUC) was 0.779 for RF, 0.771 for SVM, 0.772 for XGBOOST, 0.720 for iScore, and 0.664 for THRIVE. For 3-year prediction the AUC was 0.743 for RF, 0.777 for SVM, 0.773 for XGBOOST, 0.710 for iScore, and 0.675 for THRIVE. The study provided three ML-based predictive models that achieved good discrimination and clinical usefulness in outcome prediction after AIS and broadened the application of the iScore and THRIVE scoring system for long-term outcome prediction. Our findings warrant comparative analyses of ML and existing statistical method-based risk prediction tools for outcome prediction after AIS in new datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发基于机器学习的模型并进行内部验证,对现有风险评分进行外部验证,以预测缺血性中风患者的预后
我们开发了新的 ML 模型并从外部验证了现有的统计模型(缺血性卒中预测风险评分 [iScore] 和血管事件健康风险总计 [THRIVE] 评分),用于预测首次 AIS 住院后 90 天和 3 年的复发性卒中或全因死亡率的复合情况。 在 2005 年 1 月至 2016 年 11 月期间因 AIS 住院治疗并随访至 2019 年 11 月的成人中,我们开发了三种 ML 模型(随机森林 [RF]、支持向量机 [SVM] 和极端梯度提升 [XGBOOST]),并利用 721 名患者的数据和 90 个潜在预测变量对 iScore 和 THRIVE 评分预测 AIS 住院治疗后的综合结果进行了外部验证。 90天和3年后,分别有11%和34%的患者达到了综合结果。在 90 天的预测中,RF、SVM、XGBOOST、iScore 和 THRIVE 的接收器操作特征曲线下面积(AUC)分别为 0.779、0.771、0.772、0.720 和 0.664。对于 3 年预测,RF 的 AUC 为 0.743,SVM 为 0.777,XGBOOST 为 0.773,iScore 为 0.710,THRIVE 为 0.675。 该研究提供了三种基于 ML 的预测模型,这些模型在 AIS 后的预后预测中具有良好的区分度和临床实用性,并拓宽了 iScore 和 THRIVE 评分系统在长期预后预测中的应用。我们的研究结果值得在新的数据集中对基于 ML 和现有统计方法的风险预测工具进行比较分析,以预测 AIS 后的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting early-stage coronary artery disease using machine learning and routine clinical biomarkers improved by augmented virtual data Why Thorough Open Data Descriptions Matters More Than Ever in the Age of AI: Opportunities for Cardiovascular Research Meet Key Digital Health thought leaders: Jagmeet (Jag) Singh Machine learning-based prediction of 1-year all-cause mortality in patients undergoing CRT implantation: Validation of the SEMMELWEIS-CRT score in the European CRT Survey I dataset Effect of Urban Environment on Cardiovascular Health: A Feasibility Pilot Study using Machine Learning to Predict Heart Rate Variability in Heart Failure Patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1