3D numerical analysis of soil nailing in sedimentary soil with vertical inclusions

M. Barbosa, Leonardo Ferreira, George Souza, R. Cunha, E. Palmeira
{"title":"3D numerical analysis of soil nailing in sedimentary soil with vertical inclusions","authors":"M. Barbosa, Leonardo Ferreira, George Souza, R. Cunha, E. Palmeira","doi":"10.28927/sr.2023.005723","DOIUrl":null,"url":null,"abstract":"In this case study of a soil nail retaining wall, the measured horizontal displacement is of the order of 0.023% H, where H is the excavation depth, while the two-dimensional Finite Element Method (FEM) analysis suggests horizontal displacements of the order of at least 0.5% H. This study aims to understand which parameters influence such displacements through a Sensitivity Analysis. In addition, the study compares results obtained through two-dimensional and three-dimensional FEM analyses for this case. It concludes that Young’s Modulus (E) and the in-situ earth pressure coefficient (K0) are the two parameters that most influence such displacements. This study shows that Mohr Coulomb’s perfectly plastic Elastic Constitutive Model is unsuitable for simulating this structure, which had minimal displacements in situ, suggesting the Hardening Soil model (Schanz et al., 1999) as a viable alternative. Compared to 3D analysis, 2D analysis showed significantly larger horizontal displacements. This led to the conclusion that 2D analysis in MEF is unsuitable for predicting lateral displacements unless a Reduction Factor (FR) ranging from 0.4 to 1.0 was applied.","PeriodicalId":507352,"journal":{"name":"Soils and Rocks","volume":"224 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Rocks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2023.005723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this case study of a soil nail retaining wall, the measured horizontal displacement is of the order of 0.023% H, where H is the excavation depth, while the two-dimensional Finite Element Method (FEM) analysis suggests horizontal displacements of the order of at least 0.5% H. This study aims to understand which parameters influence such displacements through a Sensitivity Analysis. In addition, the study compares results obtained through two-dimensional and three-dimensional FEM analyses for this case. It concludes that Young’s Modulus (E) and the in-situ earth pressure coefficient (K0) are the two parameters that most influence such displacements. This study shows that Mohr Coulomb’s perfectly plastic Elastic Constitutive Model is unsuitable for simulating this structure, which had minimal displacements in situ, suggesting the Hardening Soil model (Schanz et al., 1999) as a viable alternative. Compared to 3D analysis, 2D analysis showed significantly larger horizontal displacements. This led to the conclusion that 2D analysis in MEF is unsuitable for predicting lateral displacements unless a Reduction Factor (FR) ranging from 0.4 to 1.0 was applied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有垂直包裹体的沉积土中土钉的三维数值分析
在这个土钉挡土墙案例研究中,测得的水平位移量级为 0.023% H,其中 H 为开挖深度,而二维有限元法(FEM)分析表明水平位移量级至少为 0.5% H。此外,本研究还对二维和三维有限元分析得出的结果进行了比较。研究得出结论,杨氏模量 (E) 和原位土压力系数 (K0) 是对此类位移影响最大的两个参数。这项研究表明,莫尔-库仑的完全塑性弹性构造模型不适合模拟这种原位位移极小的结构,因此建议采用硬化土模型(Schanz 等人,1999 年)作为可行的替代方案。与三维分析相比,二维分析显示的水平位移要大得多。由此得出结论,除非采用 0.4 至 1.0 的折减系数(FR),否则 MEF 中的二维分析不适合预测横向位移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-situ and laboratory characterisation of stiff and dense geomaterials for driven pile analysis and design Use of ICT to implement an active learning strategy in soil mechanics courses at undergraduate level Investigating the Martian soil at the InSight landing site The development and evaluation of an educational board game on basic geotechnical soil characterization Influence of industrial effluent treatment ettringite on the compressive and tensile strength and microstructure of soil-cement mixtures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1