A review on the current approach for the sustainable production of nanocomposites from agricultural wastes and their application for the adsorption of organophosphate flame retardants
Anna E. Ivbanikaro, Jonathan O Okonkwo, E. Rotimi Sadiku, C. Maepa
{"title":"A review on the current approach for the sustainable production of nanocomposites from agricultural wastes and their application for the adsorption of organophosphate flame retardants","authors":"Anna E. Ivbanikaro, Jonathan O Okonkwo, E. Rotimi Sadiku, C. Maepa","doi":"10.1177/09673911231181270","DOIUrl":null,"url":null,"abstract":"Water pollution caused by emerging organic pollutants such as the halogenated organophosphate flame retardants, has exacerbated the issue of water scarcity. An eco-friendly technology, e.g., the adsorption technique, requires the use of affordable and safe adsorbents. Agricultural waste materials are promising adsorbents for wastewater remediation due to their relative abundance, biodegradability, non-toxic and cost-effective properties. However, most agricultural wastes are not ideal for adsorption in their raw forms and may require physical or chemical pre-treatments/modification, in order to increase the materials' compatibility and natural adsorption properties. Cellulose is an important constituent of plant residues that can be used as a precursor for the production of greener and sustainable industrial nanomaterials. Therefore, in this review, a discourse on the most recent approach/strategies for the modification of a range of agricultural wastes is presented. The result from their applications showed agricultural wastes has great prospects as adsorbents. The challenges encountered in the synthesis of plant-based adsorbents and the development of 3-D structured nanocomposites from cellulose, to circumvent these difficulties is extensively reviewed. Furthermore, the prospects in the application of cellulose beads/ZnO nanocomposites (CB-ZnO) derived from the maize tassel, for the adsorption of the halogenated organophosphate esters from aqueous matrices are presented in this review","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers and Polymer Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09673911231181270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Water pollution caused by emerging organic pollutants such as the halogenated organophosphate flame retardants, has exacerbated the issue of water scarcity. An eco-friendly technology, e.g., the adsorption technique, requires the use of affordable and safe adsorbents. Agricultural waste materials are promising adsorbents for wastewater remediation due to their relative abundance, biodegradability, non-toxic and cost-effective properties. However, most agricultural wastes are not ideal for adsorption in their raw forms and may require physical or chemical pre-treatments/modification, in order to increase the materials' compatibility and natural adsorption properties. Cellulose is an important constituent of plant residues that can be used as a precursor for the production of greener and sustainable industrial nanomaterials. Therefore, in this review, a discourse on the most recent approach/strategies for the modification of a range of agricultural wastes is presented. The result from their applications showed agricultural wastes has great prospects as adsorbents. The challenges encountered in the synthesis of plant-based adsorbents and the development of 3-D structured nanocomposites from cellulose, to circumvent these difficulties is extensively reviewed. Furthermore, the prospects in the application of cellulose beads/ZnO nanocomposites (CB-ZnO) derived from the maize tassel, for the adsorption of the halogenated organophosphate esters from aqueous matrices are presented in this review