Experimental study on seismic performance of Chinese traditional mortise and tenon joints with different lengths that tenons pull out of mortise

IF 1.3 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Bioresources Pub Date : 2023-11-21 DOI:10.15376/biores.19.1.478-499
Junhong Huan, Tianyang Chu, Xiaodong Guo, Zemeng Sun, Xiaoyi Zhou, Wei Wang, Yating Yang
{"title":"Experimental study on seismic performance of Chinese traditional mortise and tenon joints with different lengths that tenons pull out of mortise","authors":"Junhong Huan, Tianyang Chu, Xiaodong Guo, Zemeng Sun, Xiaoyi Zhou, Wei Wang, Yating Yang","doi":"10.15376/biores.19.1.478-499","DOIUrl":null,"url":null,"abstract":"This paper presents the results of a study on seismic performance of mortise-tenon joints with different lengths that tenons pull out of joints. Three 1:3.52 scaled mortise-tenon joint specimens were fabricated: one with through-tenon joints, one with half-tenon joints, and one with dovetail joints. Seismic data of the joints, such as hysteretic curves, skeleton curves, stiffness degradation rules, and energy dissipation capacity curves, were obtained by low-cycle reversed loading test. The influence of lengths that tenons pull out of joints on the mortise-tenon joints was analyzed. The seismic performance of three types of mortise-tenon joints was compared. The results showed that all hysteretic loops are z shaped. The seismic performance of the through joint was the best among three types of mortise tenon joint. The length that the tenon pulls out of the joint significantly affected the performance of the mortise and tenon joints.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"22 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15376/biores.19.1.478-499","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the results of a study on seismic performance of mortise-tenon joints with different lengths that tenons pull out of joints. Three 1:3.52 scaled mortise-tenon joint specimens were fabricated: one with through-tenon joints, one with half-tenon joints, and one with dovetail joints. Seismic data of the joints, such as hysteretic curves, skeleton curves, stiffness degradation rules, and energy dissipation capacity curves, were obtained by low-cycle reversed loading test. The influence of lengths that tenons pull out of joints on the mortise-tenon joints was analyzed. The seismic performance of three types of mortise-tenon joints was compared. The results showed that all hysteretic loops are z shaped. The seismic performance of the through joint was the best among three types of mortise tenon joint. The length that the tenon pulls out of the joint significantly affected the performance of the mortise and tenon joints.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同长度榫头拉出榫卯的中国传统榫卯抗震性能实验研究
本文介绍了对不同长度的榫卯连接进行抗震性能研究的结果。本文制作了三个比例为 1:3.52 的榫卯连接试件:一个是通榫连接试件,一个是半榫连接试件,一个是燕尾连接试件。通过低周期反向加载试验获得了接头的抗震数据,如滞后曲线、骨架曲线、刚度衰减规则和耗能能力曲线。分析了榫头拉出长度对榫卯连接的影响。比较了三种榫卯结构的抗震性能。结果表明,所有滞回都呈 Z 形。在三种榫卯连接方式中,直通式连接的抗震性能最好。榫头拉出接头的长度对榫卯连接的性能有很大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioresources
Bioresources 工程技术-材料科学:纸与木材
CiteScore
2.90
自引率
13.30%
发文量
397
审稿时长
2.3 months
期刊介绍: The purpose of BioResources is to promote scientific discourse and to foster scientific developments related to sustainable manufacture involving lignocellulosic or woody biomass resources, including wood and agricultural residues. BioResources will focus on advances in science and technology. Emphasis will be placed on bioproducts, bioenergy, papermaking technology, wood products, new manufacturing materials, composite structures, and chemicals derived from lignocellulosic biomass.
期刊最新文献
Solid-state fermentation for gossypol detoxification and nutritive enrichment of cottonseed cake: A scale-up of batch fermentation process Crystallinity and chemical structure of Amazon wood species in a log yard after natural degradation Aquatic aerobic biodegradation of commonly flushed materials in aerobic wastewater treatment plant solids Mechanical and thermo-mechanical behaviors of snake grass fiber-reinforced epoxy composite Lignin-derived lithiophilic nitrogen-doped three-dimensional porous carbon as lithium growth guiding layers for lithium-metal batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1