HIGHLY STABLE PEROVSKITE FILM WITH IONIC LIQUID ADDITIVES FOR AMBIENT AIR DEPOSITION

P. Kumnorkaew, Supawinee Chaosukho, Sorrawit Meeklinhom, Sasiphapa Rodbuntum, Nuttaya Sukgorn, A. Kaewprajak, P. Sreearunothai
{"title":"HIGHLY STABLE PEROVSKITE FILM WITH IONIC LIQUID ADDITIVES FOR AMBIENT AIR DEPOSITION","authors":"P. Kumnorkaew, Supawinee Chaosukho, Sorrawit Meeklinhom, Sasiphapa Rodbuntum, Nuttaya Sukgorn, A. Kaewprajak, P. Sreearunothai","doi":"10.55766/sujst-2023-05-e02782","DOIUrl":null,"url":null,"abstract":"Perovskite solar cells (PSCs) technology has emerged as a highly promising photovoltaic (PV) option due to remarkable advancements in power conversion efficiency (PCE). Nevertheless, the stability of PSCs continues to pose a challenge for commercialization, as factors such as moisture, oxygen, light, and temperature can lead to degradation during fabrication and actual use stage. The stability of the perovskite film is crucial for extending the device’s lifetime and performance. This research seeks to explore the degradation mechanism and improve the perovskite film’s stability by incorporating 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) and 1,3-dimethyl-3-imidazolium hexafluorophosphate (DMIMPF6) ionic liquids into a perovskite precursor using the two-step deposition technique in ambient air. The perovskite film’s degradation and PSCs’ stability were evaluated under high relative humidity conditions, averaging 73%RH without encapsulation. UV-visible spectroscopy results indicate that the most stable perovskite film, containing the BMIMBF4 ionic liquid additive, maintains its α phase perovskite structure for 144 hours without alterations in absorbance and persisted for over 336 hours before degrading into an undesirable δ phase perovskite. Furthermore, PSCs retained 74.1% of their initial PCE after 28 days of exposure to ambient conditions. This research offers promising findings for the large-scale fabrication of stable PSCs.","PeriodicalId":509211,"journal":{"name":"Suranaree Journal of Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suranaree Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55766/sujst-2023-05-e02782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite solar cells (PSCs) technology has emerged as a highly promising photovoltaic (PV) option due to remarkable advancements in power conversion efficiency (PCE). Nevertheless, the stability of PSCs continues to pose a challenge for commercialization, as factors such as moisture, oxygen, light, and temperature can lead to degradation during fabrication and actual use stage. The stability of the perovskite film is crucial for extending the device’s lifetime and performance. This research seeks to explore the degradation mechanism and improve the perovskite film’s stability by incorporating 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) and 1,3-dimethyl-3-imidazolium hexafluorophosphate (DMIMPF6) ionic liquids into a perovskite precursor using the two-step deposition technique in ambient air. The perovskite film’s degradation and PSCs’ stability were evaluated under high relative humidity conditions, averaging 73%RH without encapsulation. UV-visible spectroscopy results indicate that the most stable perovskite film, containing the BMIMBF4 ionic liquid additive, maintains its α phase perovskite structure for 144 hours without alterations in absorbance and persisted for over 336 hours before degrading into an undesirable δ phase perovskite. Furthermore, PSCs retained 74.1% of their initial PCE after 28 days of exposure to ambient conditions. This research offers promising findings for the large-scale fabrication of stable PSCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含有离子液体添加剂的高稳定性过氧化物薄膜,用于环境空气沉积
由于在功率转换效率(PCE)方面的显著进步,过氧化物太阳能电池(PSCs)技术已成为一种极具前景的光伏(PV)选择。然而,由于湿度、氧气、光线和温度等因素会导致在制造和实际使用阶段出现降解,因此 PSCs 的稳定性仍然是商业化的一个挑战。包光体薄膜的稳定性对于延长器件的使用寿命和性能至关重要。本研究试图通过在环境空气中采用两步沉积技术,将 1-丁基-3-甲基咪唑鎓四氟硼酸盐(BMIMBF4)和 1,3-二甲基-3-咪唑鎓六氟磷酸盐(DMIMPF6)离子液体加入到过氧化物前驱体中,探索降解机制并提高过氧化物薄膜的稳定性。在高相对湿度条件下(平均 73%RH 无封装),评估了过氧化物薄膜的降解和 PSC 的稳定性。紫外可见光谱结果表明,含有 BMIMBF4 离子液体添加剂的最稳定的包晶薄膜在 144 小时内保持了其 α 相包晶结构,吸光度没有发生变化,并且在降解为不理想的 δ 相包晶之前持续了 336 小时以上。此外,PSCs 在环境条件下暴露 28 天后,其初始 PCE 的保留率为 74.1%。这项研究为大规模制造稳定的 PSCs 提供了可喜的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EXPLORING FACTORS AFFECTING NITROGEN ISOLATION BY CATION EXCHANGE MEMBRANE AND THEIR IMPLICATIONS FOR MICROBIAL FUEL CELL PERFORMANCE IN WASTEWATER TREATMENT COMPREHENSIVE DISCUSSION OF THE REPAIRABLE SINGLE SERVER CATASTROPHE AND MULTIPLE VACATION QUEUEING MODEL MODEL FORMULATION AND COMPUTATION FOR FACTORS INFLUENCING MYOCARDIAL INFARCTION IN HUMANS TO ANALYZE THE LUNGS X-RAY IMAGES USING MACHINE LEARNING ALGORITHM: AN IMPLEMENTATION TO PNEUMONIA DIAGNOSIS DECIPHERING THE INTRICATE NETWORK OF POLY CYSTIC OVARIAN SYNDROME: A THOROUGH EXAMINATION OF HORMONAL AND DEMOGRAPHIC INFLUENCES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1