{"title":"TO ANALYZE THE LUNGS X-RAY IMAGES USING MACHINE LEARNING ALGORITHM: AN IMPLEMENTATION TO PNEUMONIA DIAGNOSIS","authors":"S. Agrawal, Yogesh Kumar Gupta","doi":"10.55766/sujst-2024-02-e02133","DOIUrl":null,"url":null,"abstract":"Introduction: Respiratory diseases, particularly pneumonia, pose a significant threat to human life. Pneumonia affects the respiratory function in the human body and is a dangerous lung disease. This study aims to propose a model for detecting pneumonia in chest XR images. By utilizing statistical-based features, relevant and informative features are extracted from lung X-ray images. Objective: The objective is to obtain high accuracy in pneumonia identification; the target of this work is to generate a model that can precisely recognize the presence of pneumonia by evaluating chest X-ray pictures. Method: The Method follows a three-phase approach: preprocessing, categorization, and extraction of features. Preprocessing is the stage when various filters are applied to the chest X-ray images to enhance their eminence and eradicate noise. The feature extraction phase involves extracting statistical-based features from the preprocessed images. These features capture relevant information regarding a pneumonia diagnosis. Finally, in the classification phase, algorithms for machine learning are employed to use the retrieved features to categorize the X-ray pictures as infected or uninfected. Result: The proposed model successfully detects the presence of pneumonia accurately. By leveraging advanced machine learning algorithms, the model achieves accurate X-ray image classification for the chest. Conclusion: This study concludes by presenting a model for detecting pneumonia by examining chest X-ray pictures. To accurately classify infected and non-infected lungs, the proposed model makes use of image dispensation methods and machine learning algorithms. The model's high accuracy in pneumonia detection can significantly contribute to early diagnosis and treatment.","PeriodicalId":509211,"journal":{"name":"Suranaree Journal of Science and Technology","volume":"51 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suranaree Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55766/sujst-2024-02-e02133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Respiratory diseases, particularly pneumonia, pose a significant threat to human life. Pneumonia affects the respiratory function in the human body and is a dangerous lung disease. This study aims to propose a model for detecting pneumonia in chest XR images. By utilizing statistical-based features, relevant and informative features are extracted from lung X-ray images. Objective: The objective is to obtain high accuracy in pneumonia identification; the target of this work is to generate a model that can precisely recognize the presence of pneumonia by evaluating chest X-ray pictures. Method: The Method follows a three-phase approach: preprocessing, categorization, and extraction of features. Preprocessing is the stage when various filters are applied to the chest X-ray images to enhance their eminence and eradicate noise. The feature extraction phase involves extracting statistical-based features from the preprocessed images. These features capture relevant information regarding a pneumonia diagnosis. Finally, in the classification phase, algorithms for machine learning are employed to use the retrieved features to categorize the X-ray pictures as infected or uninfected. Result: The proposed model successfully detects the presence of pneumonia accurately. By leveraging advanced machine learning algorithms, the model achieves accurate X-ray image classification for the chest. Conclusion: This study concludes by presenting a model for detecting pneumonia by examining chest X-ray pictures. To accurately classify infected and non-infected lungs, the proposed model makes use of image dispensation methods and machine learning algorithms. The model's high accuracy in pneumonia detection can significantly contribute to early diagnosis and treatment.
引言呼吸系统疾病,尤其是肺炎,对人类生命构成重大威胁。肺炎影响人体的呼吸功能,是一种危险的肺部疾病。本研究旨在提出一种在胸部 XR 图像中检测肺炎的模型。通过利用基于统计的特征,从肺部 X 光图像中提取相关的信息特征。目标本研究的目标是通过评估胸部 X 光图像,生成一个能准确识别肺炎的模型。方法:该方法分为三个阶段:预处理、分类和提取特征。预处理阶段是对胸部 X 光图像进行各种过滤,以增强图像的清晰度并消除噪音。特征提取阶段包括从预处理图像中提取基于统计的特征。这些特征可捕捉到与肺炎诊断相关的信息。最后,在分类阶段,采用机器学习算法,利用检索到的特征将 X 光图片分为感染和未感染两类。结果:所提出的模型成功地准确检测出肺炎的存在。通过利用先进的机器学习算法,该模型实现了胸部 X 光图像的准确分类。结论本研究最后提出了一种通过检查胸部 X 光图片来检测肺炎的模型。为了准确地对感染和非感染肺部进行分类,所提出的模型利用了图像分配方法和机器学习算法。该模型在肺炎检测方面的高准确率可大大促进早期诊断和治疗。