Numerical investigation of liquid mass fraction and condensation shock of wet-steam flow through convergence-divergence nozzle using strategic water droplets injection
{"title":"Numerical investigation of liquid mass fraction and condensation shock of wet-steam flow through convergence-divergence nozzle using strategic water droplets injection","authors":"Yijun Xu, Xuan Zhang, Yu Bai, Xin Li","doi":"10.1515/cppm-2023-0043","DOIUrl":null,"url":null,"abstract":"Abstract Spontaneous condensation occurs due to high steam speeds, leading to droplets in the stream that not only decrease performance but also hazard the security of the nozzle. This study aims to predict the position and size of suitable injected water droplets due to reduced losses due to liquid mass fraction. Firstly, the model of steam flow has been confirmed by experimental data using the Eulerian–Eulerian approach in Moore’s nozzle B. Then, the flow turbulence caused by phase change is modelled by k–w sst model. Then, the injection has applied in three sizes (coarse, medium, and fine) at four different positions of the nozzle and has analysed, which according to the findings of fine droplet size, has led to an enhancement in Mach number and on the other hand, injection in nucleation zone has resulted in a 7 % and 3 % reduction in wetness losses for the radius of coarse and fine droplets, respectively. It is predicted that the nucleation rate will decrease the smaller the injected droplets are in the nucleation region. Injection with a number droplet of 1.015 × 1018 and a radius of 0.013 (μm) in the nucleation zone of 10 mm after the throat increased by 4.5 % of Mach number.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"54 12","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2023-0043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Spontaneous condensation occurs due to high steam speeds, leading to droplets in the stream that not only decrease performance but also hazard the security of the nozzle. This study aims to predict the position and size of suitable injected water droplets due to reduced losses due to liquid mass fraction. Firstly, the model of steam flow has been confirmed by experimental data using the Eulerian–Eulerian approach in Moore’s nozzle B. Then, the flow turbulence caused by phase change is modelled by k–w sst model. Then, the injection has applied in three sizes (coarse, medium, and fine) at four different positions of the nozzle and has analysed, which according to the findings of fine droplet size, has led to an enhancement in Mach number and on the other hand, injection in nucleation zone has resulted in a 7 % and 3 % reduction in wetness losses for the radius of coarse and fine droplets, respectively. It is predicted that the nucleation rate will decrease the smaller the injected droplets are in the nucleation region. Injection with a number droplet of 1.015 × 1018 and a radius of 0.013 (μm) in the nucleation zone of 10 mm after the throat increased by 4.5 % of Mach number.
期刊介绍:
Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.