Numerical investigation of liquid mass fraction and condensation shock of wet-steam flow through convergence-divergence nozzle using strategic water droplets injection

IF 1 Q4 ENGINEERING, CHEMICAL Chemical Product and Process Modeling Pub Date : 2023-11-21 DOI:10.1515/cppm-2023-0043
Yijun Xu, Xuan Zhang, Yu Bai, Xin Li
{"title":"Numerical investigation of liquid mass fraction and condensation shock of wet-steam flow through convergence-divergence nozzle using strategic water droplets injection","authors":"Yijun Xu, Xuan Zhang, Yu Bai, Xin Li","doi":"10.1515/cppm-2023-0043","DOIUrl":null,"url":null,"abstract":"Abstract Spontaneous condensation occurs due to high steam speeds, leading to droplets in the stream that not only decrease performance but also hazard the security of the nozzle. This study aims to predict the position and size of suitable injected water droplets due to reduced losses due to liquid mass fraction. Firstly, the model of steam flow has been confirmed by experimental data using the Eulerian–Eulerian approach in Moore’s nozzle B. Then, the flow turbulence caused by phase change is modelled by k–w sst model. Then, the injection has applied in three sizes (coarse, medium, and fine) at four different positions of the nozzle and has analysed, which according to the findings of fine droplet size, has led to an enhancement in Mach number and on the other hand, injection in nucleation zone has resulted in a 7 % and 3 % reduction in wetness losses for the radius of coarse and fine droplets, respectively. It is predicted that the nucleation rate will decrease the smaller the injected droplets are in the nucleation region. Injection with a number droplet of 1.015 × 1018 and a radius of 0.013 (μm) in the nucleation zone of 10 mm after the throat increased by 4.5 % of Mach number.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2023-0043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Spontaneous condensation occurs due to high steam speeds, leading to droplets in the stream that not only decrease performance but also hazard the security of the nozzle. This study aims to predict the position and size of suitable injected water droplets due to reduced losses due to liquid mass fraction. Firstly, the model of steam flow has been confirmed by experimental data using the Eulerian–Eulerian approach in Moore’s nozzle B. Then, the flow turbulence caused by phase change is modelled by k–w sst model. Then, the injection has applied in three sizes (coarse, medium, and fine) at four different positions of the nozzle and has analysed, which according to the findings of fine droplet size, has led to an enhancement in Mach number and on the other hand, injection in nucleation zone has resulted in a 7 % and 3 % reduction in wetness losses for the radius of coarse and fine droplets, respectively. It is predicted that the nucleation rate will decrease the smaller the injected droplets are in the nucleation region. Injection with a number droplet of 1.015 × 1018 and a radius of 0.013 (μm) in the nucleation zone of 10 mm after the throat increased by 4.5 % of Mach number.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用策略性水滴喷射对湿蒸汽流经汇聚-发散喷嘴时的液体质量分数和凝结冲击进行数值研究
摘要 蒸汽高速运转时会产生自发冷凝,导致蒸汽流中出现水滴,这不仅会降低性能,还会危及喷嘴的安全。本研究旨在预测合适的喷射水滴的位置和大小,以减少液体质量分数造成的损失。首先,在摩尔喷嘴 B 中使用欧拉-欧拉方法通过实验数据确认了蒸汽流模型。然后,在喷嘴的四个不同位置以三种尺寸(粗、中、细)进行喷射并进行分析,结果表明,细液滴尺寸导致马赫数增加,另一方面,在成核区喷射导致粗液滴半径和细液滴半径的湿度损失分别减少 7% 和 3%。据预测,成核区内注入的液滴越小,成核率就会越低。在喉部后 10 毫米的成核区内,注入数量为 1.015 × 1018、半径为 0.013 (μm) 的液滴,马赫数增加了 4.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Product and Process Modeling
Chemical Product and Process Modeling ENGINEERING, CHEMICAL-
CiteScore
2.10
自引率
11.10%
发文量
27
期刊介绍: Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.
期刊最新文献
Layouts and tips for a typical final-year chemical engineering graduation project A parametric study on syngas production by adding CO2 and CH4 on steam gasification of biomass system using ASPEN Plus Temperature optimization model to inhibit zero-order kinetic reactions Numerical investigation of discharge pressure effect on steam ejector performance in renewable refrigeration cycle by considering wet steam model and dry gas model Energy efficiency in cooling systems: integrating machine learning and meta-heuristic algorithms for precise cooling load prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1