Niels Divens, Théo Tuerlinckx, Bernhard Westerhof, Kurt Stockman, David van Os, Koen Laurijssen
{"title":"Increased Dynamic Drivetrain Performance by Implementing a Modular Design with Decentralized Control Architecture","authors":"Niels Divens, Théo Tuerlinckx, Bernhard Westerhof, Kurt Stockman, David van Os, Koen Laurijssen","doi":"10.3390/machines11111036","DOIUrl":null,"url":null,"abstract":"This paper assesses the energy consumption, control performance, and application-specific functional requirements of a modular drivetrain in comparison to a benchmark drivetrain. A decentralised control architecture has been developed and validated using mechanical plant models. Simscape models have been validated with data from an experimental setup including an equivalent modular and benchmark drivetrain. In addition, the control strategy has been implemented and validated on the experimental setup. The results prove the ability of the control strategy to synchronize the motion of the different sliders, resulting in crank position tracking errors below 0.032 radians on the setup. The model and experimental data show an increased performance of the modular drivetrain compared to the benchmark drivetrain in terms of energy consumption, control performance, and functional requirements. The modular drivetrain is especially advantageous for machines running highly dynamic motion profiles due to the reduced inertia. For such motion profiles, an increased position tracking of up to 84% has been measured. In addition, it is shown that the modular drivetrain root mean square (RMS) torque is reduced with 32% compared to the benchmark drivetrain. However, these mechanical energy savings are partly counteracted by the higher motor losses seen in the modular drivetrain, resulting in potential electrical energy savings of around 29%.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"57 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines11111036","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper assesses the energy consumption, control performance, and application-specific functional requirements of a modular drivetrain in comparison to a benchmark drivetrain. A decentralised control architecture has been developed and validated using mechanical plant models. Simscape models have been validated with data from an experimental setup including an equivalent modular and benchmark drivetrain. In addition, the control strategy has been implemented and validated on the experimental setup. The results prove the ability of the control strategy to synchronize the motion of the different sliders, resulting in crank position tracking errors below 0.032 radians on the setup. The model and experimental data show an increased performance of the modular drivetrain compared to the benchmark drivetrain in terms of energy consumption, control performance, and functional requirements. The modular drivetrain is especially advantageous for machines running highly dynamic motion profiles due to the reduced inertia. For such motion profiles, an increased position tracking of up to 84% has been measured. In addition, it is shown that the modular drivetrain root mean square (RMS) torque is reduced with 32% compared to the benchmark drivetrain. However, these mechanical energy savings are partly counteracted by the higher motor losses seen in the modular drivetrain, resulting in potential electrical energy savings of around 29%.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.