{"title":"Enhanced anti-bacterial adhesion effect of FDMA/SR833s based dental resin composites by using 1H,1H-heptafluorobutyl methacrylate as partial diluent","authors":"Shengcan Zhang, Fang Liu, Jingwei He","doi":"10.1080/26415275.2023.2281090","DOIUrl":null,"url":null,"abstract":"Abstract With the purpose of further reducing surface free energy to achieve better anti-bacterial adhesion effect of fluorinated dimethacrylate (FDMA)/tricyclo (5.2.1.0) decanedimethanol diacrylate (SR833s) based dental resin composites (DS), 1H,1H-heptafluorobutyl methacrylate (FBMA) was used to partially replace SR933s as reactive diluent. According to the degree of substitution, the obtained resin composites were marked as DSF-1 (20 wt.% of SR833s was replaced by FBMA), DSF-2 (40 wt.% of SR833s was replaced by FBMA), and DSF-3 (60 wt.% of SR833s was replaced by FBMA). Bisphenol A glycidyl dimethacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) based resin composite (BT) was used as control. The influence of FBMA concentration on double bond conversion (DC), contact angle, surface free energy, anti-bacterial adhesion effect against Streptococcus mutans (S. mutans), volumetric shrinkage (VS) and shrinkage stress (SS), flexural strength (FS) and modulus (FM), water sorption (WS) and solubility (SL) were investigated. The results showed that FBMA addition could reduce surface free energy from 44.6 mN/m for DS to 32.9 mN/m for DSF-3, and lead to better anti-bacterial adhesion effect (the amounts of adherent bacteria decreased from 2.03 × 105 CFU/mm2 for DS to 6.44 × 104 CFU/mm2 for DSF-3). The FBMA had no negative effects on DC, VS, SS, WS, and SL. Too high a concentration of FBMA reduced FS and FM before water immersion, but the values were still higher than those of BT.","PeriodicalId":72378,"journal":{"name":"Biomaterial investigations in dentistry","volume":"6 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterial investigations in dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/26415275.2023.2281090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract With the purpose of further reducing surface free energy to achieve better anti-bacterial adhesion effect of fluorinated dimethacrylate (FDMA)/tricyclo (5.2.1.0) decanedimethanol diacrylate (SR833s) based dental resin composites (DS), 1H,1H-heptafluorobutyl methacrylate (FBMA) was used to partially replace SR933s as reactive diluent. According to the degree of substitution, the obtained resin composites were marked as DSF-1 (20 wt.% of SR833s was replaced by FBMA), DSF-2 (40 wt.% of SR833s was replaced by FBMA), and DSF-3 (60 wt.% of SR833s was replaced by FBMA). Bisphenol A glycidyl dimethacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) based resin composite (BT) was used as control. The influence of FBMA concentration on double bond conversion (DC), contact angle, surface free energy, anti-bacterial adhesion effect against Streptococcus mutans (S. mutans), volumetric shrinkage (VS) and shrinkage stress (SS), flexural strength (FS) and modulus (FM), water sorption (WS) and solubility (SL) were investigated. The results showed that FBMA addition could reduce surface free energy from 44.6 mN/m for DS to 32.9 mN/m for DSF-3, and lead to better anti-bacterial adhesion effect (the amounts of adherent bacteria decreased from 2.03 × 105 CFU/mm2 for DS to 6.44 × 104 CFU/mm2 for DSF-3). The FBMA had no negative effects on DC, VS, SS, WS, and SL. Too high a concentration of FBMA reduced FS and FM before water immersion, but the values were still higher than those of BT.