A Novel Incentive Routing Protocol with Virtual Projection for Mobile Packet Forwarding Nodes in Wireless Sensor Networks

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS JOURNAL OF INTERCONNECTION NETWORKS Pub Date : 2023-11-18 DOI:10.1142/s0219265923500287
L. Niranjan, M. Manoj Priyatham
{"title":"A Novel Incentive Routing Protocol with Virtual Projection for Mobile Packet Forwarding Nodes in Wireless Sensor Networks","authors":"L. Niranjan, M. Manoj Priyatham","doi":"10.1142/s0219265923500287","DOIUrl":null,"url":null,"abstract":"The size of the Packet Forwarding Nodes (PFNs) is becoming very small as the technology advances in Wireless Sensor Networks (WSNs). The node has an additional parameter with low energy levels. The PFNs are distributed in a square cross-sectional area with each node acting as a Sensing Point (SP) that can be used for various kinds of applications like temperature, atmospheric humidity, acoustic, and pressure measurements. The packet is divided into several fragments where each fragment is considered as fixed or variable length. Each of these packets is sent over multiple PFNs toward the data center using PFNs. The selection of PFNs in the path is picked based on the trust level. In the network even special PFNs are placed which are responsible to deliver the packets toward the data center without losing the data during the transmission. The selection of special PFNs is done by computing the meeting probability, remaining energy computation, computation of data weight, and security value computation. The proposed Incentive Routing Protocol with Virtual Projection (IRPVP) method is compared with the conventional approaches concerning the parameters like delay, link count, resource energy, healthy PFNs, non-healthy PFNs, health ratio computation, remaining energy, control to data ratio, and balancing factor. The simulation outcomes show that the performance of the proposed IRPVP algorithm is better than the other conventional algorithms.","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INTERCONNECTION NETWORKS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265923500287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The size of the Packet Forwarding Nodes (PFNs) is becoming very small as the technology advances in Wireless Sensor Networks (WSNs). The node has an additional parameter with low energy levels. The PFNs are distributed in a square cross-sectional area with each node acting as a Sensing Point (SP) that can be used for various kinds of applications like temperature, atmospheric humidity, acoustic, and pressure measurements. The packet is divided into several fragments where each fragment is considered as fixed or variable length. Each of these packets is sent over multiple PFNs toward the data center using PFNs. The selection of PFNs in the path is picked based on the trust level. In the network even special PFNs are placed which are responsible to deliver the packets toward the data center without losing the data during the transmission. The selection of special PFNs is done by computing the meeting probability, remaining energy computation, computation of data weight, and security value computation. The proposed Incentive Routing Protocol with Virtual Projection (IRPVP) method is compared with the conventional approaches concerning the parameters like delay, link count, resource energy, healthy PFNs, non-healthy PFNs, health ratio computation, remaining energy, control to data ratio, and balancing factor. The simulation outcomes show that the performance of the proposed IRPVP algorithm is better than the other conventional algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为无线传感器网络中的移动数据包转发节点设计的带虚拟投影的新型激励路由协议
随着无线传感器网络(WSN)技术的发展,数据包转发节点(PFN)的体积越来越小。节点还具有低能耗的附加参数。PFN 分布在一个正方形横截面上,每个节点都是一个传感点 (SP),可用于温度、大气湿度、声学和压力测量等各种应用。数据包被分为多个片段,每个片段的长度可固定或可变。每个数据包通过多个 PFN 向数据中心发送。路径中 PFN 的选择基于信任级别。网络中甚至会放置特殊的 PFN,负责将数据包发送到数据中心,而不会在传输过程中丢失数据。特殊 PFN 的选择是通过计算相遇概率、剩余能量计算、数据权重计算和安全值计算来完成的。在延迟、链路数、资源能量、健康 PFN、非健康 PFN、健康比计算、剩余能量、控制与数据比和平衡因子等参数方面,将所提出的虚拟投影激励路由协议(IRPVP)方法与传统方法进行了比较。仿真结果表明,提议的 IRPVP 算法的性能优于其他传统算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JOURNAL OF INTERCONNECTION NETWORKS
JOURNAL OF INTERCONNECTION NETWORKS COMPUTER SCIENCE, THEORY & METHODS-
自引率
14.30%
发文量
121
期刊介绍: The Journal of Interconnection Networks (JOIN) is an international scientific journal dedicated to advancing the state-of-the-art of interconnection networks. The journal addresses all aspects of interconnection networks including their theory, analysis, design, implementation and application, and corresponding issues of communication, computing and function arising from (or applied to) a variety of multifaceted networks. Interconnection problems occur at different levels in the hardware and software design of communicating entities in integrated circuits, multiprocessors, multicomputers, and communication networks as diverse as telephone systems, cable network systems, computer networks, mobile communication networks, satellite network systems, the Internet and biological systems.
期刊最新文献
On Sombor Index of Unicyclic and Bicyclic Graphs Monitoring Edge-Geodetic Numbers of Mycielskian Graph Classes Minimum Congestion and Wirelength of Embedding the nth Cartesian Product of K4 into Various Kinds of Grid Networks The Graft Transformation and Their Application on the Spectral Radius of Block Graphs Graph Bipartization and Via Minimization for Intersection Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1