Pub Date : 2024-01-10DOI: 10.1142/s0219265923500329
Yujia Gao, Zhen Ji, Xiaojie Sun, Qinghe Tong
For a set [Formula: see text] of connected graphs, a spanning subgraph [Formula: see text] of a graph [Formula: see text] is an [Formula: see text]-factor if every component of [Formula: see text] is isomorphic to some member of [Formula: see text]. In this paper, we give a criterion for the existence of tight toughness, isolated toughness and binding number bounds in a graph of a strong [Formula: see text]-star factor, [Formula: see text]-factor and [Formula: see text]-star factor. Moreover, we show that the bounds of the sufficient conditions are sharp.
{"title":"Bounds of Two Toughnesses and Binding Numbers for Star Factors","authors":"Yujia Gao, Zhen Ji, Xiaojie Sun, Qinghe Tong","doi":"10.1142/s0219265923500329","DOIUrl":"https://doi.org/10.1142/s0219265923500329","url":null,"abstract":"For a set [Formula: see text] of connected graphs, a spanning subgraph [Formula: see text] of a graph [Formula: see text] is an [Formula: see text]-factor if every component of [Formula: see text] is isomorphic to some member of [Formula: see text]. In this paper, we give a criterion for the existence of tight toughness, isolated toughness and binding number bounds in a graph of a strong [Formula: see text]-star factor, [Formula: see text]-factor and [Formula: see text]-star factor. Moreover, we show that the bounds of the sufficient conditions are sharp.","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":"64 3","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139441178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-10DOI: 10.1142/s0219265923500330
Chenxu Yang, Xingchao Deng, Jinxia Liang, Yuhu Liu
Let [Formula: see text] be a graph. A set [Formula: see text] is a local resolving set of [Formula: see text] if there exists [Formula: see text] such that [Formula: see text] for any [Formula: see text]. The local metric dimension [Formula: see text] of [Formula: see text] is the minimum cardinality of all the local resolving sets of [Formula: see text]. In this paper, we characterize the graphs with [Formula: see text]. Next, we obtain the Nordhaus–Gaddum-type results for local metric dimension. Finally, the local metric dimension of several graph classes is given.
{"title":"On the Local Metric Dimension of Graphs","authors":"Chenxu Yang, Xingchao Deng, Jinxia Liang, Yuhu Liu","doi":"10.1142/s0219265923500330","DOIUrl":"https://doi.org/10.1142/s0219265923500330","url":null,"abstract":"Let [Formula: see text] be a graph. A set [Formula: see text] is a local resolving set of [Formula: see text] if there exists [Formula: see text] such that [Formula: see text] for any [Formula: see text]. The local metric dimension [Formula: see text] of [Formula: see text] is the minimum cardinality of all the local resolving sets of [Formula: see text]. In this paper, we characterize the graphs with [Formula: see text]. Next, we obtain the Nordhaus–Gaddum-type results for local metric dimension. Finally, the local metric dimension of several graph classes is given.","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":"1 2","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139440348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-29DOI: 10.1142/s0219265923500275
Xiumin Wang, Fengyun Ren, Dong He, Ao Tan
The [Formula: see text]-factor and [Formula: see text]-factor of a graph are a spanning subgraph whose each component is an element of [Formula: see text] and [Formula: see text], respectively, where [Formula: see text] is a special family of trees. In this paper, we obtain a sufficient condition in terms of tight toughness, isolated toughness and binding number bounds to guarantee the existence of a [Formula: see text]-factor and [Formula: see text]-factor for any graph.
{"title":"Some Existence Theorems on Star Factors","authors":"Xiumin Wang, Fengyun Ren, Dong He, Ao Tan","doi":"10.1142/s0219265923500275","DOIUrl":"https://doi.org/10.1142/s0219265923500275","url":null,"abstract":"The [Formula: see text]-factor and [Formula: see text]-factor of a graph are a spanning subgraph whose each component is an element of [Formula: see text] and [Formula: see text], respectively, where [Formula: see text] is a special family of trees. In this paper, we obtain a sufficient condition in terms of tight toughness, isolated toughness and binding number bounds to guarantee the existence of a [Formula: see text]-factor and [Formula: see text]-factor for any graph.","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":"55 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139214630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-27DOI: 10.1142/s0219265923500305
S. Sugumaran, V. Sivasankaran, M. G. Chitra
The Internet of Things (IoT) is a developing technology in the world of communication and embedded systems. The IoT consists of a wireless sensor network with Internet service. The data size of the sensor node is small, but the routing of the data and energy consumption are important issues that need to be advocated. The Mobile Adhoc Network (MANET) plays a very important role in IoT services. In MANET, nodes are moving within the network. So, routes are created dynamically on demand and do not have any centralized units. The route optimization method addresses issues like selecting the best routes in terms of overhead, loop free, traffic control, balancing, throughput, route maintenance, and so on. In this paper, IoT routes are created between sensors to sink through MANET nodes with WSN routing ideology. The Krill Herd and Feed Forward Optimization (KH-FFO)-based method discovers the routes. The Krill herd algorithm clusters the network. This method increases network speed and reduces energy waste. Feed-forward optimization involves learning all the nodes in the network and identifying the shortest and most energy-efficient route from source to sink. The overall performance of the KH-FFO protocol has improved the network’s capacity, reduced packet loss, and increased the energy utilization of the nodes in the network. The ns-3 simulation for KH-FFO is tested in different node densities and observed energy utilization is increased by 28%, network life is increased by 7%, Packet delivery ratio improved by 7.5%, the End-to-End delay improved by 31% and the Throughput is 3%. These metrices are better than the existing works in the network.
{"title":"Krill Herd and Feed Forward Optimization System-Based Routing Protocol for IoT-MANET Environment","authors":"S. Sugumaran, V. Sivasankaran, M. G. Chitra","doi":"10.1142/s0219265923500305","DOIUrl":"https://doi.org/10.1142/s0219265923500305","url":null,"abstract":"The Internet of Things (IoT) is a developing technology in the world of communication and embedded systems. The IoT consists of a wireless sensor network with Internet service. The data size of the sensor node is small, but the routing of the data and energy consumption are important issues that need to be advocated. The Mobile Adhoc Network (MANET) plays a very important role in IoT services. In MANET, nodes are moving within the network. So, routes are created dynamically on demand and do not have any centralized units. The route optimization method addresses issues like selecting the best routes in terms of overhead, loop free, traffic control, balancing, throughput, route maintenance, and so on. In this paper, IoT routes are created between sensors to sink through MANET nodes with WSN routing ideology. The Krill Herd and Feed Forward Optimization (KH-FFO)-based method discovers the routes. The Krill herd algorithm clusters the network. This method increases network speed and reduces energy waste. Feed-forward optimization involves learning all the nodes in the network and identifying the shortest and most energy-efficient route from source to sink. The overall performance of the KH-FFO protocol has improved the network’s capacity, reduced packet loss, and increased the energy utilization of the nodes in the network. The ns-3 simulation for KH-FFO is tested in different node densities and observed energy utilization is increased by 28%, network life is increased by 7%, Packet delivery ratio improved by 7.5%, the End-to-End delay improved by 31% and the Throughput is 3%. These metrices are better than the existing works in the network.","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":"52 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139230136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24DOI: 10.1142/s0219265923500317
Remi Mariam Reji, R. Sundara Rajan, T. M. Rajalaxmi
An important tool for the execution of parallel algorithms and the simulation of interconnection networks is graph embedding. The quality of an embedding can be assessed using some cost metrics. The dilation and wirelength are the commonly used parameters. The Knödel graph [Formula: see text] is a minimum linear gossip network and has minimum broadcasting. It has [Formula: see text] vertices, [Formula: see text] edges, where [Formula: see text] is even, and [Formula: see text]log[Formula: see text]. In this study, we solve the dilation problem of embedding the Knödel graph into certain cube-like architectures such as hypercube, folded hypercube, and augmented cube. In [G. Fertin, A. Raspaud, A survey on Knödel graphs, Discrete Applied Mathematics 137 (2004) 173–195], it is proved that the dilation of embedding the Knödel graph [Formula: see text] into the hypercube [Formula: see text] is at most [Formula: see text]. In this study, we obtain an improved upper bound for dilation of embedding the Knödel graph into the hypercube and it is equal to [Formula: see text]. Also, we calculate the wirelength of embedding the Knödel graph into the above-said cube-like architectures using dilation.
图嵌入是执行并行算法和模拟互连网络的重要工具。嵌入的质量可以通过一些成本指标来评估。扩张和线长是常用参数。克诺德尔图[计算公式:见正文]是最小线性八卦网络,具有最小广播。它有[公式:见正文]顶点、[公式:见正文]边(其中[公式:见正文]为偶数)和[公式:见正文]log[公式:见正文]。在这项研究中,我们解决了将克诺德尔图嵌入某些立方体结构(如超立方体、折叠超立方体和增强立方体)的扩张问题。在[G. Fertin, A. Raspaud, A survey on Knödel graphs, Discrete Applied Mathematics 137 (2004) 173-195] 中,证明了将 Knödel 图[公式:见正文]嵌入超立方体[公式:见正文]的扩张量至多为[公式:见正文]。在本研究中,我们得到了将克诺德尔图嵌入超立方体的扩张的改进上界,它等于[式:见正文]。此外,我们还计算了利用扩张法将克诺德尔图嵌入上述立方体架构的线长。
{"title":"Embedding Knödel Graph into Cube-like Architectures: Dilation Optimization and Wirelength Analysis","authors":"Remi Mariam Reji, R. Sundara Rajan, T. M. Rajalaxmi","doi":"10.1142/s0219265923500317","DOIUrl":"https://doi.org/10.1142/s0219265923500317","url":null,"abstract":"An important tool for the execution of parallel algorithms and the simulation of interconnection networks is graph embedding. The quality of an embedding can be assessed using some cost metrics. The dilation and wirelength are the commonly used parameters. The Knödel graph [Formula: see text] is a minimum linear gossip network and has minimum broadcasting. It has [Formula: see text] vertices, [Formula: see text] edges, where [Formula: see text] is even, and [Formula: see text]log[Formula: see text]. In this study, we solve the dilation problem of embedding the Knödel graph into certain cube-like architectures such as hypercube, folded hypercube, and augmented cube. In [G. Fertin, A. Raspaud, A survey on Knödel graphs, Discrete Applied Mathematics 137 (2004) 173–195], it is proved that the dilation of embedding the Knödel graph [Formula: see text] into the hypercube [Formula: see text] is at most [Formula: see text]. In this study, we obtain an improved upper bound for dilation of embedding the Knödel graph into the hypercube and it is equal to [Formula: see text]. Also, we calculate the wirelength of embedding the Knödel graph into the above-said cube-like architectures using dilation.","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":"27 10","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139240577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-18DOI: 10.1142/s0219265923500287
L. Niranjan, M. Manoj Priyatham
The size of the Packet Forwarding Nodes (PFNs) is becoming very small as the technology advances in Wireless Sensor Networks (WSNs). The node has an additional parameter with low energy levels. The PFNs are distributed in a square cross-sectional area with each node acting as a Sensing Point (SP) that can be used for various kinds of applications like temperature, atmospheric humidity, acoustic, and pressure measurements. The packet is divided into several fragments where each fragment is considered as fixed or variable length. Each of these packets is sent over multiple PFNs toward the data center using PFNs. The selection of PFNs in the path is picked based on the trust level. In the network even special PFNs are placed which are responsible to deliver the packets toward the data center without losing the data during the transmission. The selection of special PFNs is done by computing the meeting probability, remaining energy computation, computation of data weight, and security value computation. The proposed Incentive Routing Protocol with Virtual Projection (IRPVP) method is compared with the conventional approaches concerning the parameters like delay, link count, resource energy, healthy PFNs, non-healthy PFNs, health ratio computation, remaining energy, control to data ratio, and balancing factor. The simulation outcomes show that the performance of the proposed IRPVP algorithm is better than the other conventional algorithms.
{"title":"A Novel Incentive Routing Protocol with Virtual Projection for Mobile Packet Forwarding Nodes in Wireless Sensor Networks","authors":"L. Niranjan, M. Manoj Priyatham","doi":"10.1142/s0219265923500287","DOIUrl":"https://doi.org/10.1142/s0219265923500287","url":null,"abstract":"The size of the Packet Forwarding Nodes (PFNs) is becoming very small as the technology advances in Wireless Sensor Networks (WSNs). The node has an additional parameter with low energy levels. The PFNs are distributed in a square cross-sectional area with each node acting as a Sensing Point (SP) that can be used for various kinds of applications like temperature, atmospheric humidity, acoustic, and pressure measurements. The packet is divided into several fragments where each fragment is considered as fixed or variable length. Each of these packets is sent over multiple PFNs toward the data center using PFNs. The selection of PFNs in the path is picked based on the trust level. In the network even special PFNs are placed which are responsible to deliver the packets toward the data center without losing the data during the transmission. The selection of special PFNs is done by computing the meeting probability, remaining energy computation, computation of data weight, and security value computation. The proposed Incentive Routing Protocol with Virtual Projection (IRPVP) method is compared with the conventional approaches concerning the parameters like delay, link count, resource energy, healthy PFNs, non-healthy PFNs, health ratio computation, remaining energy, control to data ratio, and balancing factor. The simulation outcomes show that the performance of the proposed IRPVP algorithm is better than the other conventional algorithms.","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":"15 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139261722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-10DOI: 10.1142/s0219265923500299
Xiaohui Hua, Yonghao Lai
Connectivity is an important parameter for evaluating the reliability and stability of an interconnection network. Based on the edge connectivity, more refined connectivities have been proposed. The [Formula: see text]-component edge connectivity [Formula: see text] and the [Formula: see text]-extra edge connectivity [Formula: see text] are two important parameters to assess the robustness of an interconnection network, which received attention extensively. In this paper, we determine the [Formula: see text]-component edge connectivity and the [Formula: see text]-extra edge connectivity of bubble-sort star graphs [Formula: see text]. For [Formula: see text]-component edge connectivity, we prove that [Formula: see text], [Formula: see text], and [Formula: see text] for [Formula: see text]. For [Formula: see text]-extra edge connectivity, we prove that [Formula: see text], [Formula: see text], and [Formula: see text] for [Formula: see text].
{"title":"Component Edge Connectivity and Extra Edge Connectivity of Bubble-Sort Star Graphs","authors":"Xiaohui Hua, Yonghao Lai","doi":"10.1142/s0219265923500299","DOIUrl":"https://doi.org/10.1142/s0219265923500299","url":null,"abstract":"Connectivity is an important parameter for evaluating the reliability and stability of an interconnection network. Based on the edge connectivity, more refined connectivities have been proposed. The [Formula: see text]-component edge connectivity [Formula: see text] and the [Formula: see text]-extra edge connectivity [Formula: see text] are two important parameters to assess the robustness of an interconnection network, which received attention extensively. In this paper, we determine the [Formula: see text]-component edge connectivity and the [Formula: see text]-extra edge connectivity of bubble-sort star graphs [Formula: see text]. For [Formula: see text]-component edge connectivity, we prove that [Formula: see text], [Formula: see text], and [Formula: see text] for [Formula: see text]. For [Formula: see text]-extra edge connectivity, we prove that [Formula: see text], [Formula: see text], and [Formula: see text] for [Formula: see text].","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":" 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135190962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-08DOI: 10.1142/s0219265923500214
Ranjeet B. Kagade, N. Vijayaraj
Nowadays, Wireless Sensor Networks (WSN) face more security threats due to the increased service of data transmission at high speed in almost all applications. The security of the network must be ensured by identifying abnormal traffic and current emerging threats. The most promising model for safeguarding the core network from outside attacks is Intrusion Detection Systems (IDS). This work focuses on the introduction of clustering-based intrusion detection in WSN. Initially, clustering takes place, where the nodes are grouped under certain constraints via selecting the optimal Cluster Head (CH). The considered constraints are energy, delay, distance, risk, and link quality. This optimal selection takes place by a new hybrid optimization algorithm termed as Truncate Combined Bald Eagle Optimization (TCBEO) algorithm. The subsequent process is intrusion detection, where a hybrid detection model combining a Convolutional Neural Network (CNN) & Bi-directional Gated Recurrent unit (Bi-GRU) is employed, which is trained with features like improved entropy and correlation taking into consideration of constraints like energy and distance, respectively. Eventually, the suggested work’s effectiveness is affirmed against existing techniques using various performance metrics.
目前,无线传感器网络(WSN)面临着越来越多的安全威胁,因为它在几乎所有的应用中都需要高速传输数据。通过识别异常流量和当前出现的威胁,保证网络的安全。保护核心网络免受外部攻击最有前途的模型是入侵检测系统(IDS)。本文重点介绍了WSN中基于聚类的入侵检测方法。最初,集群发生,节点通过选择最优簇头(CH)在一定的约束下分组。考虑的约束条件包括能量、延迟、距离、风险和链路质量。这种优化选择是通过一种新的混合优化算法进行的,称为截断组合秃鹰优化(TCBEO)算法。接下来的过程是入侵检测,其中结合卷积神经网络(CNN)的混合检测模型;采用双向门控循环单元(Bi-directional Gated Recurrent unit, Bi-GRU),该单元分别考虑能量约束和距离约束,使用改进熵和相关性等特征进行训练。最后,建议的工作的有效性通过使用各种性能度量来确定。
{"title":"Hybrid Model-Based Intrusion Detection in Wireless Sensor Network on the Basis of Risk and Link Quality","authors":"Ranjeet B. Kagade, N. Vijayaraj","doi":"10.1142/s0219265923500214","DOIUrl":"https://doi.org/10.1142/s0219265923500214","url":null,"abstract":"Nowadays, Wireless Sensor Networks (WSN) face more security threats due to the increased service of data transmission at high speed in almost all applications. The security of the network must be ensured by identifying abnormal traffic and current emerging threats. The most promising model for safeguarding the core network from outside attacks is Intrusion Detection Systems (IDS). This work focuses on the introduction of clustering-based intrusion detection in WSN. Initially, clustering takes place, where the nodes are grouped under certain constraints via selecting the optimal Cluster Head (CH). The considered constraints are energy, delay, distance, risk, and link quality. This optimal selection takes place by a new hybrid optimization algorithm termed as Truncate Combined Bald Eagle Optimization (TCBEO) algorithm. The subsequent process is intrusion detection, where a hybrid detection model combining a Convolutional Neural Network (CNN) & Bi-directional Gated Recurrent unit (Bi-GRU) is employed, which is trained with features like improved entropy and correlation taking into consideration of constraints like energy and distance, respectively. Eventually, the suggested work’s effectiveness is affirmed against existing techniques using various performance metrics.","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":"8 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135392001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-03DOI: 10.1142/s0219265923500226
M. Ganesh Raja, S. Jeyalaksshmi
In most Internet of Things (IoT) systems, Quality of service (QoS) must be confirmed with respect to the requirement of implementation domain. The dynamic nature of the IoT surroundings shapes it to complicate the fulfilment of these commitments. A wide range of unpredictable events endanger the quality of service. While execution the self-adaptive schemes handle with system’s unpredictable. In IoT-based Wireless Sensor Networks (WSNs), the significant self-management objectives are self-configuration (SC) and self-healing (SH). In this paper, Self-Configuration and Self-healing Framework using an extreme gradient boosting (XGBoost) Classifier are proposed. In this framework, the IoT traffic classes are categorized as several types under XGBoost classifier. In SC phase, the IoT devices are self-configured by allocating various transmission slots, contention access period (CAPs) on the basis of its categories with priorities. In SH phase, the source node cardinally establishes a confined route retrieval method if the residual power in-between node is truncated or the node has displaced far away. The proposed framework is executed in NS-2 and the results exhibit that the proposed framework has higher packet delivery ratio with reduced packet drops and computational cost. Therefore, the proposed approach has attained 24.7%, 28.9%, 12.75% higher PDR, and 16.8%, 19.87%, and 13.7% higher residual energy than the existing methods like Self-Healing and Seamless Connectivity using Kalman Filter among IoT Networks (SH-SC-KF-IoT), Provenance aware run-time verification mechanism for self-healing IoT (PA-RVM-SH-IoT), and Fully Anonymous Routing Protocol and Self-healing Capacity in Unbalanced Sensor Networks (FARP-SC-USN) methods, respectively.
{"title":"Self-Configuration and Self-Healing Framework Using Extreme Gradient Boosting (XGBoost) Classifier for IoT-WSN","authors":"M. Ganesh Raja, S. Jeyalaksshmi","doi":"10.1142/s0219265923500226","DOIUrl":"https://doi.org/10.1142/s0219265923500226","url":null,"abstract":"In most Internet of Things (IoT) systems, Quality of service (QoS) must be confirmed with respect to the requirement of implementation domain. The dynamic nature of the IoT surroundings shapes it to complicate the fulfilment of these commitments. A wide range of unpredictable events endanger the quality of service. While execution the self-adaptive schemes handle with system’s unpredictable. In IoT-based Wireless Sensor Networks (WSNs), the significant self-management objectives are self-configuration (SC) and self-healing (SH). In this paper, Self-Configuration and Self-healing Framework using an extreme gradient boosting (XGBoost) Classifier are proposed. In this framework, the IoT traffic classes are categorized as several types under XGBoost classifier. In SC phase, the IoT devices are self-configured by allocating various transmission slots, contention access period (CAPs) on the basis of its categories with priorities. In SH phase, the source node cardinally establishes a confined route retrieval method if the residual power in-between node is truncated or the node has displaced far away. The proposed framework is executed in NS-2 and the results exhibit that the proposed framework has higher packet delivery ratio with reduced packet drops and computational cost. Therefore, the proposed approach has attained 24.7%, 28.9%, 12.75% higher PDR, and 16.8%, 19.87%, and 13.7% higher residual energy than the existing methods like Self-Healing and Seamless Connectivity using Kalman Filter among IoT Networks (SH-SC-KF-IoT), Provenance aware run-time verification mechanism for self-healing IoT (PA-RVM-SH-IoT), and Fully Anonymous Routing Protocol and Self-healing Capacity in Unbalanced Sensor Networks (FARP-SC-USN) methods, respectively.","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":"27 21","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135873445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.1142/s0219265923500263
Chenxu Yang, Xingchao Deng, Wen Li
Let [Formula: see text] be a graph. For any [Formula: see text], if there exists [Formula: see text] such that [Formula: see text], we say that [Formula: see text] resolving [Formula: see text]. A set [Formula: see text] of vertices in [Formula: see text] is a local resolving set of [Formula: see text] if there exists [Formula: see text] such that [Formula: see text] for any [Formula: see text]. The local metric dimension [Formula: see text] of [Formula: see text] is the minimum cardinality of all the local resolving sets of [Formula: see text]. In this paper, we study the relation between [Formula: see text] and [Formula: see text]. Furthermore, we construct a graph [Formula: see text] such that [Formula: see text] and [Formula: see text]. Finally, we investigate the local metric dimension of several special line graphs.
{"title":"On the Local Metric Dimension of Line Graphs","authors":"Chenxu Yang, Xingchao Deng, Wen Li","doi":"10.1142/s0219265923500263","DOIUrl":"https://doi.org/10.1142/s0219265923500263","url":null,"abstract":"Let [Formula: see text] be a graph. For any [Formula: see text], if there exists [Formula: see text] such that [Formula: see text], we say that [Formula: see text] resolving [Formula: see text]. A set [Formula: see text] of vertices in [Formula: see text] is a local resolving set of [Formula: see text] if there exists [Formula: see text] such that [Formula: see text] for any [Formula: see text]. The local metric dimension [Formula: see text] of [Formula: see text] is the minimum cardinality of all the local resolving sets of [Formula: see text]. In this paper, we study the relation between [Formula: see text] and [Formula: see text]. Furthermore, we construct a graph [Formula: see text] such that [Formula: see text] and [Formula: see text]. Finally, we investigate the local metric dimension of several special line graphs.","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":"52 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135871548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}