{"title":"Mineralogical Characteristics of Baima Vanadium Titanomagnetite during Magnetic Separation Upgrading","authors":"Xiang Zhong, Haoran Hu, Shuo Li, Jian Gao, Zhixin Shi, Fuxing Zhu","doi":"10.3390/separations10110574","DOIUrl":null,"url":null,"abstract":"The Baima vanadium titanomagnetite deposit, located in the Panzhihua-Xichang (Panxi) metallogenic belt in China, is one of the super-large deposits in the region. The titanomagnetite upgrading process involves grinding the raw ore followed by magnetic separation. To determine the processing characteristics of the ore and assess the upgrading process, this study employs various methods and techniques, including the X-ray fluorescence spectrometer (XRF), chemical element analysis, the electron probe microanalyzer (EPMA), and the advanced mineral identification and characterization system (AMICS). The results show that the Fe grades in the upgraded raw ore, upgraded concentrate, and upgraded tailings are 55.68%, 57.89%, and 15.62%, respectively. After upgrading, the titanomagnetite content increased from 77.41% to 82.10%, and the Fe distribution in titanomagnetite also increased from 91.05% to 93.14%. In the upgraded raw ore, titanomagnetite particles followed a normal distribution, with 50.44% in the 38–74 μm range. In the upgraded concentrate, titanomagnetite was concentrated in the 19–38 μm range. Based on EPMA data, the theoretical Fe grade in titanomagnetite was calculated to be 65.08%, indicating the potential for further improvement through the upgrading process. This study elucidates the mineralogical characteristics during the vanadium titanomagnetite upgrading, providing a theoretical basis to further enhance the Fe recovery rate.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"25 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations10110574","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Baima vanadium titanomagnetite deposit, located in the Panzhihua-Xichang (Panxi) metallogenic belt in China, is one of the super-large deposits in the region. The titanomagnetite upgrading process involves grinding the raw ore followed by magnetic separation. To determine the processing characteristics of the ore and assess the upgrading process, this study employs various methods and techniques, including the X-ray fluorescence spectrometer (XRF), chemical element analysis, the electron probe microanalyzer (EPMA), and the advanced mineral identification and characterization system (AMICS). The results show that the Fe grades in the upgraded raw ore, upgraded concentrate, and upgraded tailings are 55.68%, 57.89%, and 15.62%, respectively. After upgrading, the titanomagnetite content increased from 77.41% to 82.10%, and the Fe distribution in titanomagnetite also increased from 91.05% to 93.14%. In the upgraded raw ore, titanomagnetite particles followed a normal distribution, with 50.44% in the 38–74 μm range. In the upgraded concentrate, titanomagnetite was concentrated in the 19–38 μm range. Based on EPMA data, the theoretical Fe grade in titanomagnetite was calculated to be 65.08%, indicating the potential for further improvement through the upgrading process. This study elucidates the mineralogical characteristics during the vanadium titanomagnetite upgrading, providing a theoretical basis to further enhance the Fe recovery rate.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization