A. S. Zhilin, O. I. Rebrin, M. A. Malykh, M. S. Pechurin, I. Kovenskiy
{"title":"Si-Cu contact mass for catalysis in coatings industry for oil and gas pipes","authors":"A. S. Zhilin, O. I. Rebrin, M. A. Malykh, M. S. Pechurin, I. Kovenskiy","doi":"10.31660/0445-0108-2023-5-46-54","DOIUrl":null,"url":null,"abstract":"Two contact masses were obtained and analyzed for their catalytic properties in the production of hydrophobic coatings. These masses are based on the silicon-copper system and consist of 25%Cu-75%Si and 50%Cu-50%Si compositions. A standard method of copper(I) chloride reduction was optimized to obtain finely dispersed copper particles with high catalytic activity. It is shown that reduction is possible directly in contact with silicon, the resulting average diameter of copper particles is 5-10 microns in both contact masses (25%Cu-75%Si and 50%Cu-50%Si). A metallographic analysis revealed a loose morphology of the silicon-copper phase interfaces, which is necessary to enhance the catalytic activity of the contact masses. Local chemical analysis by scanning electron microscopy has established the ratio of the particle size of the initial polycrystals of copper chloride(I) and the resulting copper particles as a result of reduction on silicon. The process of deep reduction makes it possible to obtain particles up to 5 microns in size. These results provide useful insights into the formulation of coatings containing organosilicon compounds to reduce friction in hydrocarbon transport.","PeriodicalId":240239,"journal":{"name":"Oil and Gas Studies","volume":"25 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil and Gas Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31660/0445-0108-2023-5-46-54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Two contact masses were obtained and analyzed for their catalytic properties in the production of hydrophobic coatings. These masses are based on the silicon-copper system and consist of 25%Cu-75%Si and 50%Cu-50%Si compositions. A standard method of copper(I) chloride reduction was optimized to obtain finely dispersed copper particles with high catalytic activity. It is shown that reduction is possible directly in contact with silicon, the resulting average diameter of copper particles is 5-10 microns in both contact masses (25%Cu-75%Si and 50%Cu-50%Si). A metallographic analysis revealed a loose morphology of the silicon-copper phase interfaces, which is necessary to enhance the catalytic activity of the contact masses. Local chemical analysis by scanning electron microscopy has established the ratio of the particle size of the initial polycrystals of copper chloride(I) and the resulting copper particles as a result of reduction on silicon. The process of deep reduction makes it possible to obtain particles up to 5 microns in size. These results provide useful insights into the formulation of coatings containing organosilicon compounds to reduce friction in hydrocarbon transport.