Yunxiang Guo, Xinsong Zhang, Daxiang Li, Chenghong Gu, Cheng Lu, Ting Ji, Yue Wang
{"title":"Multiobjective Electric Vehicle Charging Network Planning Considering Chance-Constraint on the Travel Distance for Charging","authors":"Yunxiang Guo, Xinsong Zhang, Daxiang Li, Chenghong Gu, Cheng Lu, Ting Ji, Yue Wang","doi":"10.1049/2023/6690544","DOIUrl":null,"url":null,"abstract":"Electric vehicle charging stations (EVCSs) are important infrastructures to support sustainable development of electric vehicles (EVs), by providing convenient, rapid charging services. Therefore, the planning of electric vehicle charging network (EVCN) has attracted wide interest from both industry and academia. In this paper, a multiobjective planning model for EVCN is developed, where a fixed number of EVCSs are planned in the traffic network (TN) to achieve two objectives, i.e., minimizing both average travel distance for charging (TDfC) of EVs and investment costs of EVCN. According to the random characteristics of EVs’ TDfC, its constraint is presented as a chance constraint in the developed EVCN planning model. The nondominated sorting genetic Algorithm II with the constraint domination principle (NSGA-II-CDP) is customized to solve the developed multiobjective EVCN planning model, by designing a special coding scheme, a crossover operator, and a mutation operator. Then, a maximum gradient principle of investment revenue is designed to select the optimal planning strategy from the Pareto-optimal solution set, when taking the investment return ratio as primary consideration. A 25-node TN is used to justify the effectiveness of the developed methodology.","PeriodicalId":48518,"journal":{"name":"IET Electrical Systems in Transportation","volume":"17 11","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Electrical Systems in Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1049/2023/6690544","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Electric vehicle charging stations (EVCSs) are important infrastructures to support sustainable development of electric vehicles (EVs), by providing convenient, rapid charging services. Therefore, the planning of electric vehicle charging network (EVCN) has attracted wide interest from both industry and academia. In this paper, a multiobjective planning model for EVCN is developed, where a fixed number of EVCSs are planned in the traffic network (TN) to achieve two objectives, i.e., minimizing both average travel distance for charging (TDfC) of EVs and investment costs of EVCN. According to the random characteristics of EVs’ TDfC, its constraint is presented as a chance constraint in the developed EVCN planning model. The nondominated sorting genetic Algorithm II with the constraint domination principle (NSGA-II-CDP) is customized to solve the developed multiobjective EVCN planning model, by designing a special coding scheme, a crossover operator, and a mutation operator. Then, a maximum gradient principle of investment revenue is designed to select the optimal planning strategy from the Pareto-optimal solution set, when taking the investment return ratio as primary consideration. A 25-node TN is used to justify the effectiveness of the developed methodology.