Dimitrios A. Moysidis, Georgios D. Karatzinis, Y. Boutalis, Y. L. Karnavas
{"title":"A Study of Noise Effect in Electrical Machines Bearing Fault Detection and Diagnosis Considering Different Representative Feature Models","authors":"Dimitrios A. Moysidis, Georgios D. Karatzinis, Y. Boutalis, Y. L. Karnavas","doi":"10.3390/machines11111029","DOIUrl":null,"url":null,"abstract":"As the field of fault diagnosis in electrical machines has significantly attracted the interest of the research community in recent years, several methods have arisen in the literature. Also, raw data signals can be acquired easily nowadays, and, thus, machine learning (ML) and deep learning (DL) are candidate tools for effective diagnosis. At the same time, a challenging task is to identify the presence and type of a bearing fault under noisy conditions, especially when relevant faults are at their incipient stage. Since, in real-world applications and especially in industrial processes, electrical machines operate in constantly noisy environments, a key to an effective approach lies in the preprocessing stage adopted. In this work, an evaluation study is conducted to find the most suitable signal preprocessing techniques and the most effective model for fault diagnosis of 16 conditions/classes, from a low-workload (computational burden) perspective using a well-known dataset. More specifically, the reliability and resiliency of conventional ML and DL models is investigated here, towards rolling bearing fault detection, simulating data that correspond to noisy industrial environments. Diverse preprocessing methods are applied in order to study the performance of different training methods from the feature extraction perspective. These feature extraction methods include statistical features in time-domain analysis (TDA); wavelet packet decomposition (WPD); continuous wavelet transform (CWT); and signal-to-image conversion (SIC), utilizing raw vibration signals acquired under varying load conditions. The noise effect is examined and thoroughly commented on. Finally, the paper provides accumulated usual practices in the sense of preferred preprocessing methods and training models under different load and noise conditions.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"31 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines11111029","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
As the field of fault diagnosis in electrical machines has significantly attracted the interest of the research community in recent years, several methods have arisen in the literature. Also, raw data signals can be acquired easily nowadays, and, thus, machine learning (ML) and deep learning (DL) are candidate tools for effective diagnosis. At the same time, a challenging task is to identify the presence and type of a bearing fault under noisy conditions, especially when relevant faults are at their incipient stage. Since, in real-world applications and especially in industrial processes, electrical machines operate in constantly noisy environments, a key to an effective approach lies in the preprocessing stage adopted. In this work, an evaluation study is conducted to find the most suitable signal preprocessing techniques and the most effective model for fault diagnosis of 16 conditions/classes, from a low-workload (computational burden) perspective using a well-known dataset. More specifically, the reliability and resiliency of conventional ML and DL models is investigated here, towards rolling bearing fault detection, simulating data that correspond to noisy industrial environments. Diverse preprocessing methods are applied in order to study the performance of different training methods from the feature extraction perspective. These feature extraction methods include statistical features in time-domain analysis (TDA); wavelet packet decomposition (WPD); continuous wavelet transform (CWT); and signal-to-image conversion (SIC), utilizing raw vibration signals acquired under varying load conditions. The noise effect is examined and thoroughly commented on. Finally, the paper provides accumulated usual practices in the sense of preferred preprocessing methods and training models under different load and noise conditions.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.