Ting-Yu Liu, Zhao Wei, Wang Tao, Xiao-Dong An, Wei Lai, Yi-Neng Huang
{"title":"Comparative Study on the Phase Transition Behaviors of Fractional Molecular Field Theory and Random-Site Ising Model","authors":"Ting-Yu Liu, Zhao Wei, Wang Tao, Xiao-Dong An, Wei Lai, Yi-Neng Huang","doi":"10.1088/1674-1056/ad0cc7","DOIUrl":null,"url":null,"abstract":"Fractional molecular field theory (FMFT) is a phenomenological theory that describes phase transitions in crystals with randomly distributed components, such as the relaxor-ferroelectrics and spin glasses. In order to verify the feasibility of this theory, this paper fits it to the Monte Carlo simulations of specific heat and susceptibility vs temperature of two-dimensional random-site Ising model (2D-RSIM). The results indicate that FMFT deviates from 2D-RSIM significantly. The main reason for the deviation is that 2D-RSIM is a typical system of component random distribution, where the real order parameter is spatially heterogeneous and has no symmetry of space translation, but the basic assumption of FMFT means that the parameter is spatially uniform and has symmetry of space translation.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":"C-36 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad0cc7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fractional molecular field theory (FMFT) is a phenomenological theory that describes phase transitions in crystals with randomly distributed components, such as the relaxor-ferroelectrics and spin glasses. In order to verify the feasibility of this theory, this paper fits it to the Monte Carlo simulations of specific heat and susceptibility vs temperature of two-dimensional random-site Ising model (2D-RSIM). The results indicate that FMFT deviates from 2D-RSIM significantly. The main reason for the deviation is that 2D-RSIM is a typical system of component random distribution, where the real order parameter is spatially heterogeneous and has no symmetry of space translation, but the basic assumption of FMFT means that the parameter is spatially uniform and has symmetry of space translation.
期刊介绍:
Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics.
Subject coverage includes:
Condensed matter physics and the physics of materials
Atomic, molecular and optical physics
Statistical, nonlinear and soft matter physics
Plasma physics
Interdisciplinary physics.