Guiding as a General Consequence of the Charged Particle Interaction with the Inner Surface of an Insulator Capillary—Guiding of 1 MeV Proton Microbeam through Polytetrafluoroethylene Macrocapillary
{"title":"Guiding as a General Consequence of the Charged Particle Interaction with the Inner Surface of an Insulator Capillary—Guiding of 1 MeV Proton Microbeam through Polytetrafluoroethylene Macrocapillary","authors":"K. Tőkési, I. Rajta, G. Nagy, R. J. Bereczky","doi":"10.3390/atoms11110145","DOIUrl":null,"url":null,"abstract":"The transmission of energetic, 1 MeV proton microbeam through a single, cylindrical shaped, macrometer-sized polytetrafluoroethylene capillary was studied experimentally. The capillary axis was tilted with respect to the axis of the incident ion beam. The tilting, the aspect ratio of the capillary and the small beam divergence disabled the geometrical transmission of the beam through the target. The intensity, energy, deflection and charge state of the transmitted beam were investigated. We found that the pure guided transmission of a MeV/amu energy ion beam is observable. We clearly identified three completely different stages during the guiding process according to the measured energy distribution of transmitted particles. At the beginning the transmission intensity was low and only inelastic contributions with energy lower than 1 MeV were found in the spectrum. Later, in the second stage, the elastic peak appeared and became more and more significant. Finally, when the stable transmission evolved, only the elastic peak was present and the inelastic area was totally absent as a direct consequence of the ion guiding and as a result of the charged particle interaction with a charged inner surface of the insulator capillary.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":"29 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11110145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The transmission of energetic, 1 MeV proton microbeam through a single, cylindrical shaped, macrometer-sized polytetrafluoroethylene capillary was studied experimentally. The capillary axis was tilted with respect to the axis of the incident ion beam. The tilting, the aspect ratio of the capillary and the small beam divergence disabled the geometrical transmission of the beam through the target. The intensity, energy, deflection and charge state of the transmitted beam were investigated. We found that the pure guided transmission of a MeV/amu energy ion beam is observable. We clearly identified three completely different stages during the guiding process according to the measured energy distribution of transmitted particles. At the beginning the transmission intensity was low and only inelastic contributions with energy lower than 1 MeV were found in the spectrum. Later, in the second stage, the elastic peak appeared and became more and more significant. Finally, when the stable transmission evolved, only the elastic peak was present and the inelastic area was totally absent as a direct consequence of the ion guiding and as a result of the charged particle interaction with a charged inner surface of the insulator capillary.
AtomsPhysics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍:
Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions