The study of atomic spectroscopy and collision processes in a dense plasma environment has gained a considerable interest in the past few years due to its several applications in various branches of physics. The multiconfiguration Dirac-Fock (MCDF) method and relativistic configuration interaction (RCI) technique incorporating the uniform electron gas model (UEGM) and analytical plasma screening (APS) potentials have been employed for characterizing the interactions among the charged particles in plasma. The bound and continuum state wavefunctions are determined using the aforementioned potentials within a relativistic Dirac-Coulomb atomic structure framework. The present approach is applied for the calculation of electronic structures, radiative properties, electron impact excitation cross sections and photoionization cross sections of many electron systems confined in a plasma environment. The present study not only extends our knowledge of the plasma-screening effect but also opens the door for the modelling and diagnostics of astrophysical and laboratory plasmas.
{"title":"A Study of the Atomic Processes of Highly Charged Ions Embedded in Dense Plasma","authors":"A. Jha, Mayank Dimri, Dishu Dawra, Man Mohan","doi":"10.3390/atoms11120158","DOIUrl":"https://doi.org/10.3390/atoms11120158","url":null,"abstract":"The study of atomic spectroscopy and collision processes in a dense plasma environment has gained a considerable interest in the past few years due to its several applications in various branches of physics. The multiconfiguration Dirac-Fock (MCDF) method and relativistic configuration interaction (RCI) technique incorporating the uniform electron gas model (UEGM) and analytical plasma screening (APS) potentials have been employed for characterizing the interactions among the charged particles in plasma. The bound and continuum state wavefunctions are determined using the aforementioned potentials within a relativistic Dirac-Coulomb atomic structure framework. The present approach is applied for the calculation of electronic structures, radiative properties, electron impact excitation cross sections and photoionization cross sections of many electron systems confined in a plasma environment. The present study not only extends our knowledge of the plasma-screening effect but also opens the door for the modelling and diagnostics of astrophysical and laboratory plasmas.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":"86 S11","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138999510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuri A. Dyakov, Sergey O. Adamson, Gennady V. Golubkov, I. Morozov, D. R. Nigmatullin, Oleg A. Olkhov, Pao K. Wang, M. G. Golubkov
Criegee intermediates, which are the products of the ozonolysis of alkenes, play a key role in many chemical and physical processes in the atmosphere. Their reactions with other atmospheric compounds are responsible for the formation of hydroxyl, methyl, hydrogen radicals, nitric and sulfuric acids, and others. Methane is an active greenhouse gas whose concentration has increased rapidly in the last several decades. In this work, we consider the interaction between these two important atmospheric compounds. We choose the three simple Criegee intermediate (CI) molecules: formaldehyde oxide (CH2OO), acetaldehyde oxide (CH3CHOO), and acetone oxide ((CH3)2COO). Some reactions between methane and these Cis have been studied earlier as possible pathways for deactivating methane as well as a source of methanol formation due to molecular collisions in the atmosphere. In the present study, we extend the consideration to the case when an intermediate energetically stable complex is formed after collision. We found that this complex could easily decompose to form an OH radical and another unstable fragment, which can quickly dissociate into CH3 radicals, atomic hydrogen, acetone, acetaldehyde, propaldehyde, methyl alcohol, water, and others, depending on the type of CI being reacted with. These compounds can actively interact with other atmospheric components and change their physical and chemical properties. In addition, CI with a methyl substituent is shown to have increased energy in transition states and minima, resulting in slower reaction rates.
作为烯烃臭氧分解产物的克里基中间产物在大气中的许多化学和物理过程中发挥着关键作用。它们与大气中的其他化合物发生反应,形成羟基、甲基、氢基、硝酸和硫酸等。甲烷是一种活跃的温室气体,其浓度在过去几十年中迅速增加。在这项工作中,我们考虑了这两种重要大气化合物之间的相互作用。我们选择了三种简单的克里基中间体 (CI) 分子:氧化甲醛 (CH2OO)、氧化乙醛 (CH3CHOO) 和氧化丙酮 ((CH3)2COO)。甲烷与这些顺式分子之间的一些反应早先已被研究过,这些反应可能是使甲烷失活的途径,也可能是大气中分子碰撞形成甲醇的来源。在本研究中,我们将研究范围扩大到碰撞后形成能量稳定的中间复合物的情况。我们发现,这种复合物很容易分解形成 OH 自由基和另一种不稳定片段,根据与之反应的 CI 类型,它们可以迅速解离成 CH3 自由基、原子氢、丙酮、乙醛、丙醛、甲醇、水等。这些化合物会与大气中的其他成分产生积极的相互作用,并改变它们的物理和化学性质。此外,带有甲基取代基的 CI 在过渡态和最小值中的能量增加,导致反应速度减慢。
{"title":"Reactions of CH2OO, CH3CHOO, and (CH3)2COO with Methane through the Formation of Intermediate Complex","authors":"Yuri A. Dyakov, Sergey O. Adamson, Gennady V. Golubkov, I. Morozov, D. R. Nigmatullin, Oleg A. Olkhov, Pao K. Wang, M. G. Golubkov","doi":"10.3390/atoms11120157","DOIUrl":"https://doi.org/10.3390/atoms11120157","url":null,"abstract":"Criegee intermediates, which are the products of the ozonolysis of alkenes, play a key role in many chemical and physical processes in the atmosphere. Their reactions with other atmospheric compounds are responsible for the formation of hydroxyl, methyl, hydrogen radicals, nitric and sulfuric acids, and others. Methane is an active greenhouse gas whose concentration has increased rapidly in the last several decades. In this work, we consider the interaction between these two important atmospheric compounds. We choose the three simple Criegee intermediate (CI) molecules: formaldehyde oxide (CH2OO), acetaldehyde oxide (CH3CHOO), and acetone oxide ((CH3)2COO). Some reactions between methane and these Cis have been studied earlier as possible pathways for deactivating methane as well as a source of methanol formation due to molecular collisions in the atmosphere. In the present study, we extend the consideration to the case when an intermediate energetically stable complex is formed after collision. We found that this complex could easily decompose to form an OH radical and another unstable fragment, which can quickly dissociate into CH3 radicals, atomic hydrogen, acetone, acetaldehyde, propaldehyde, methyl alcohol, water, and others, depending on the type of CI being reacted with. These compounds can actively interact with other atmospheric components and change their physical and chemical properties. In addition, CI with a methyl substituent is shown to have increased energy in transition states and minima, resulting in slower reaction rates.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":"13 2","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138971613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Atomic, molecular, and optical (AMO) physics is a vastly important sub-discipline [...]
原子、分子和光学(AMO)物理学是一门非常重要的分支学科 [...]
{"title":"Photon and Particle Impact Spectroscopy and Dynamics of Atoms, Molecules and Clusters","authors":"H. Chakraborty, H. R. Varma","doi":"10.3390/atoms11120156","DOIUrl":"https://doi.org/10.3390/atoms11120156","url":null,"abstract":"Atomic, molecular, and optical (AMO) physics is a vastly important sub-discipline [...]","PeriodicalId":8629,"journal":{"name":"Atoms","volume":"23 10‐11","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139008888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdul Hasib Rahimyar, Des Hill, James Glimm, S. Abarzhi
In this work, we theoretically and numerically investigate Rayleigh–Taylor dynamics with constant acceleration. On the side of theory, we employ the group theory approach to directly link the governing equations to the momentum model, and to precisely derive the buoyancy and drag parameters for the bubble and spike in the linear, nonlinear, and mixing regimes. On the side of simulations, we analyze numerical data on Rayleigh–Taylor mixing by applying independent self-similar processes associated with the growth of the bubble amplitude and with the bubble merger. Based on the obtained results, we reveal the constituents governing Rayleigh–Taylor dynamics in the linear, nonlinear, and mixing regimes. We outline the implications of our considerations for experiments in plasmas, including inertial confinement fusion.
{"title":"On Rayleigh–Taylor Dynamics","authors":"Abdul Hasib Rahimyar, Des Hill, James Glimm, S. Abarzhi","doi":"10.3390/atoms11120155","DOIUrl":"https://doi.org/10.3390/atoms11120155","url":null,"abstract":"In this work, we theoretically and numerically investigate Rayleigh–Taylor dynamics with constant acceleration. On the side of theory, we employ the group theory approach to directly link the governing equations to the momentum model, and to precisely derive the buoyancy and drag parameters for the bubble and spike in the linear, nonlinear, and mixing regimes. On the side of simulations, we analyze numerical data on Rayleigh–Taylor mixing by applying independent self-similar processes associated with the growth of the bubble amplitude and with the bubble merger. Based on the obtained results, we reveal the constituents governing Rayleigh–Taylor dynamics in the linear, nonlinear, and mixing regimes. We outline the implications of our considerations for experiments in plasmas, including inertial confinement fusion.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":"33 17","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138589110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahlem Benmerabet, Abdelaziz Bouhadiba, Y. Belhocine, S. Rahali, N. Sbei, M. Seydou, Ihsene Boucheriha, Imane Omeiri, Ibtissem Meriem Assaba
In this investigation, the potential use of native β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) as encapsulating agents for trichloroethylene (TCE) was assessed. Various quantum chemical parameters, including HOMO, LUMO, and HOMO–LUMO gap, were calculated. The docking process was examined by considering different initial configurations. The complexation energies were calculated at the molecular level using DFT/BLYP-D4 and PBEh-3c calculations to gain insight into TCE encapsulation within the β-CD and HP-β-CD cavities. We used the independent gradient model (IGM) and extended charge decomposition analysis (ECDA) approaches to examine non-covalent interactions and charge transfer within TCE@β-CD and TCE@HP-β-CD complexes. The calculated thermodynamic data and complexation energies exhibited negative values for both considered complexes, indicating a favorable complexation process. Weak Van der Waals intermolecular interactions were the main driving forces in stabilizing the formed complex. Additionally, Monte Carlo simulations were conducted for a better understanding of the inclusion process. Our results provide evidence for the use of β-CD and HP-β-CD as suitable macrocyclic hosts for complexing trichloroethylene.
{"title":"DFT Investigation on the Complexation of β-Cyclodextrin and Hydroxypropyl-β-Cyclodextrin as Recognition Hosts with Trichloroethylene","authors":"Ahlem Benmerabet, Abdelaziz Bouhadiba, Y. Belhocine, S. Rahali, N. Sbei, M. Seydou, Ihsene Boucheriha, Imane Omeiri, Ibtissem Meriem Assaba","doi":"10.3390/atoms11120153","DOIUrl":"https://doi.org/10.3390/atoms11120153","url":null,"abstract":"In this investigation, the potential use of native β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) as encapsulating agents for trichloroethylene (TCE) was assessed. Various quantum chemical parameters, including HOMO, LUMO, and HOMO–LUMO gap, were calculated. The docking process was examined by considering different initial configurations. The complexation energies were calculated at the molecular level using DFT/BLYP-D4 and PBEh-3c calculations to gain insight into TCE encapsulation within the β-CD and HP-β-CD cavities. We used the independent gradient model (IGM) and extended charge decomposition analysis (ECDA) approaches to examine non-covalent interactions and charge transfer within TCE@β-CD and TCE@HP-β-CD complexes. The calculated thermodynamic data and complexation energies exhibited negative values for both considered complexes, indicating a favorable complexation process. Weak Van der Waals intermolecular interactions were the main driving forces in stabilizing the formed complex. Additionally, Monte Carlo simulations were conducted for a better understanding of the inclusion process. Our results provide evidence for the use of β-CD and HP-β-CD as suitable macrocyclic hosts for complexing trichloroethylene.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":"43 16","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138593927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Beata Ziaja, Michal Stransky, K. Kapcia, Ichiro Inoue
In this communication, we describe the application of Boltzmann kinetic equations for modeling massive electronic excitation in a silicon nanocrystal film after its irradiation with intense femtosecond hard X-ray pulses. This analysis was inspired by an experiment recently performed at the X-ray free-electron laser facility SACLA, which measured a significant reduction in atomic scattering factors triggered by an X-ray pulse of the intensity ∼1019 W/cm2, occurring on a timescale comparable with the X-ray pulse duration (6 fs full width at half maximum). We show that a Boltzmann kinetic equation solver can accurately follow the details of the electronic excitation in silicon atoms caused by such a hard X-ray pulse, yielding predictions in very good agreement with the experimental data.
{"title":"Modeling Femtosecond Reduction of Atomic Scattering Factors in X-ray-Excited Silicon with Boltzmann Kinetic Equations","authors":"Beata Ziaja, Michal Stransky, K. Kapcia, Ichiro Inoue","doi":"10.3390/atoms11120154","DOIUrl":"https://doi.org/10.3390/atoms11120154","url":null,"abstract":"In this communication, we describe the application of Boltzmann kinetic equations for modeling massive electronic excitation in a silicon nanocrystal film after its irradiation with intense femtosecond hard X-ray pulses. This analysis was inspired by an experiment recently performed at the X-ray free-electron laser facility SACLA, which measured a significant reduction in atomic scattering factors triggered by an X-ray pulse of the intensity ∼1019 W/cm2, occurring on a timescale comparable with the X-ray pulse duration (6 fs full width at half maximum). We show that a Boltzmann kinetic equation solver can accurately follow the details of the electronic excitation in silicon atoms caused by such a hard X-ray pulse, yielding predictions in very good agreement with the experimental data.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":"10 3","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138590854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photoionization of neutral chlorine atom is investigated in this paper in the framework of the screening constant per unit nuclear charge (SCUNC) method. Resonance energies, quantum defects and effective charges of the 3s23p4 (3P2,1,0)ns and 3s23p4 (3P1,0)nd Rydberg series originating from both the 2P03/2 ground state and the 2P01/2 excited state of chlorine atom are reported. The present study believed to be the first theoretical investigation is compared with the recent experimental measurements (Yang et al., Astrophys. J. 810:132, 2015). Good agreements are obtained between theory and experiments. New SCUNC data are tabulated as useful references for interpreting astrophysical spectra from neutral atomic chlorine.
本文在单位核电荷筛选常数(SCUNC)方法的框架下研究了中性氯原子的光离。本文报道了分别来自氯原子2P03/2基态和2P01/2激发态的3s23p4 (3P2,1,0)ns和3s23p4 (3P1,0)和Rydberg系列的共振能、量子缺陷和有效电荷。本研究被认为是第一次理论研究,并与最近的实验测量进行了比较(Yang et al., Astrophys.)。[j] .中文信息学报,2015)。理论与实验结果吻合较好。新的SCUNC数据被制成表格,作为解释中性原子氯的天体物理光谱的有用参考。
{"title":"Photoionization Study of Neutral Chlorine Atom","authors":"M. T. Gning, I. Sakho","doi":"10.3390/atoms11120152","DOIUrl":"https://doi.org/10.3390/atoms11120152","url":null,"abstract":"Photoionization of neutral chlorine atom is investigated in this paper in the framework of the screening constant per unit nuclear charge (SCUNC) method. Resonance energies, quantum defects and effective charges of the 3s23p4 (3P2,1,0)ns and 3s23p4 (3P1,0)nd Rydberg series originating from both the 2P03/2 ground state and the 2P01/2 excited state of chlorine atom are reported. The present study believed to be the first theoretical investigation is compared with the recent experimental measurements (Yang et al., Astrophys. J. 810:132, 2015). Good agreements are obtained between theory and experiments. New SCUNC data are tabulated as useful references for interpreting astrophysical spectra from neutral atomic chlorine.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":"61 7","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138597266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although the comparison of fully differential ionization data for particle and antiparticle impact provides the ultimate tests of theoretical models, only very low antiparticle beam intensities are available. Hence, few experiments of this type have been performed. Therefore, available experimentally obtained single and double differential cross-sections, which are much easier to obtain, are compared in order to demonstrate differences when only the projectile mass or charge (+1 or −1) is changed. Included in the comparison are cross-sections calculated for positron and electron impact using a three-particle classical trajectory Monte Carlo method. The calculated cross-sections provide independent information about the ejected electron and the scattered projectile contributions, plus information about the impact parameters, all as functions of the collision kinematics. From these comparisons, suggestions as to where future investigations are both feasible and useful are provided.
{"title":"Differential Studies of Argon Particle and Antiparticle Interactions: Present Status and Future Possibilities","authors":"R. D. DuBois, K. Tőkési","doi":"10.3390/atoms11120151","DOIUrl":"https://doi.org/10.3390/atoms11120151","url":null,"abstract":"Although the comparison of fully differential ionization data for particle and antiparticle impact provides the ultimate tests of theoretical models, only very low antiparticle beam intensities are available. Hence, few experiments of this type have been performed. Therefore, available experimentally obtained single and double differential cross-sections, which are much easier to obtain, are compared in order to demonstrate differences when only the projectile mass or charge (+1 or −1) is changed. Included in the comparison are cross-sections calculated for positron and electron impact using a three-particle classical trajectory Monte Carlo method. The calculated cross-sections provide independent information about the ejected electron and the scattered projectile contributions, plus information about the impact parameters, all as functions of the collision kinematics. From these comparisons, suggestions as to where future investigations are both feasible and useful are provided.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" 18","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138613524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Seres, E. Seres, Carles Serrat, T. Dinh, Noboru Hasegawa, M. Ishino, M. Nishikino, S. Namba
While generating high harmonics in long media of helium gas, at certain laser intensities and chirp, the spectral shift and split of the harmonic lines were experimentally observed, sometimes exceeding one harmonic order. Beyond reporting these results, numerical simulations were performed to understand the phenomenon. A 3D propagation model was solved under the strong field approximation. According to the simulations, the distortion of the laser beam profile during propagation and the consequently accused change in the conditions of phase matching are responsible for the observations. The observed phenomena can be an excellent tool to produce tunable narrow band harmonic sources covering a broad range around 13.5 nm for spectroscopy and for seeding X-ray lasers, and to understand non-desired detuning of the seed wavelength.
{"title":"Spectral Shift and Split of Harmonic Lines in Propagation Affected High Harmonic Generation in a Long-Interaction Gas Tube","authors":"J. Seres, E. Seres, Carles Serrat, T. Dinh, Noboru Hasegawa, M. Ishino, M. Nishikino, S. Namba","doi":"10.3390/atoms11120150","DOIUrl":"https://doi.org/10.3390/atoms11120150","url":null,"abstract":"While generating high harmonics in long media of helium gas, at certain laser intensities and chirp, the spectral shift and split of the harmonic lines were experimentally observed, sometimes exceeding one harmonic order. Beyond reporting these results, numerical simulations were performed to understand the phenomenon. A 3D propagation model was solved under the strong field approximation. According to the simulations, the distortion of the laser beam profile during propagation and the consequently accused change in the conditions of phase matching are responsible for the observations. The observed phenomena can be an excellent tool to produce tunable narrow band harmonic sources covering a broad range around 13.5 nm for spectroscopy and for seeding X-ray lasers, and to understand non-desired detuning of the seed wavelength.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":"113 2","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138623064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michele A. Quinto, N. Esponda, M. F. Rojas, R. Rivarola, J. Monti
Electron removal (target ionization and/or projectile electron loss) in neutral–atom collisions is theoretically studied for the impact of H0, He0 and He+ beams on noble gases (He, Ne and Ar). These reactions are investigated theoretically within the Continuum Distorted Wave-Eikonal Initial State model. New features have been included in the theoretical model: (i) a scaled projectile charge depending on its velocity and charge, (ii) a dynamic projectile-effective-charge depending on the momentum transfer, and (iii) a dynamic target-effective-charge depending on the kinematics of the emitted electron. The energy and angular spectra of emitted electrons from the target and from the projectile are calculated and compared with the available experimental data. Also, the influence of each one of the corrections on the resulting spectra will be studied.
{"title":"A Critical Analysis of Target Ionization and Projectile Electron Loss in Neutral– and Ion–Atom Collisions","authors":"Michele A. Quinto, N. Esponda, M. F. Rojas, R. Rivarola, J. Monti","doi":"10.3390/atoms11120149","DOIUrl":"https://doi.org/10.3390/atoms11120149","url":null,"abstract":"Electron removal (target ionization and/or projectile electron loss) in neutral–atom collisions is theoretically studied for the impact of H0, He0 and He+ beams on noble gases (He, Ne and Ar). These reactions are investigated theoretically within the Continuum Distorted Wave-Eikonal Initial State model. New features have been included in the theoretical model: (i) a scaled projectile charge depending on its velocity and charge, (ii) a dynamic projectile-effective-charge depending on the momentum transfer, and (iii) a dynamic target-effective-charge depending on the kinematics of the emitted electron. The energy and angular spectra of emitted electrons from the target and from the projectile are calculated and compared with the available experimental data. Also, the influence of each one of the corrections on the resulting spectra will be studied.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":"177 ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139251080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}