M. Michalec, Jan Foltýn, Tomáš Dryml, Lukáš Snopek, Dominik Javorský, Martin Čupr, Petr Svoboda
{"title":"Assembly Error Tolerance Estimation for Large-Scale Hydrostatic Bearing Segmented Sliders under Static and Low-Speed Conditions","authors":"M. Michalec, Jan Foltýn, Tomáš Dryml, Lukáš Snopek, Dominik Javorský, Martin Čupr, Petr Svoboda","doi":"10.3390/machines11111025","DOIUrl":null,"url":null,"abstract":"Hydrostatic bearings come with certain advantages over rolling bearings in moving large-scale structures. However, assembly errors are a serious matter on large scales. This study focuses on finding assembly error tolerances for the most common types in segmented errors of hydrostatic bearing sliders: tilt and offset. The experimental part was performed in the laboratory on a full diagnostic hydrostatic bearing testing rig. An investigation of the type of error on bearing performance was first conducted under static conditions. We identified the limiting error-to-film thickness ratio (e/h) for static offset error as 2.5 and the tilt angle as θ = 0.46° for the investigated case. Subsequently, two types of offset error were investigated under slow-speed conditions at 38 mm/s. The limiting error for the offset error considering the relative bi-directional movement of the slider and the pad was determined as e/h < 1. The results further indicate that the error tolerance would further decrease with increasing speed. The experimental results of error tolerances can be used to determine the required film thickness or vice versa.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"2 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines11111025","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrostatic bearings come with certain advantages over rolling bearings in moving large-scale structures. However, assembly errors are a serious matter on large scales. This study focuses on finding assembly error tolerances for the most common types in segmented errors of hydrostatic bearing sliders: tilt and offset. The experimental part was performed in the laboratory on a full diagnostic hydrostatic bearing testing rig. An investigation of the type of error on bearing performance was first conducted under static conditions. We identified the limiting error-to-film thickness ratio (e/h) for static offset error as 2.5 and the tilt angle as θ = 0.46° for the investigated case. Subsequently, two types of offset error were investigated under slow-speed conditions at 38 mm/s. The limiting error for the offset error considering the relative bi-directional movement of the slider and the pad was determined as e/h < 1. The results further indicate that the error tolerance would further decrease with increasing speed. The experimental results of error tolerances can be used to determine the required film thickness or vice versa.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.