Ling Zhang, Lu Yang, Yan Zhao, Haochun Hou, Zeliang Zhang, Cai-Hong Bu, Jun Lin, Xinran Zheng, Dong Fu
{"title":"Experimental study of quartz classification in the enhanced gravity field using Falcon concentrator","authors":"Ling Zhang, Lu Yang, Yan Zhao, Haochun Hou, Zeliang Zhang, Cai-Hong Bu, Jun Lin, Xinran Zheng, Dong Fu","doi":"10.37190/ppmp/175242","DOIUrl":null,"url":null,"abstract":"The classification and separation of minerals happen in the traditional gravity separation simultaneously. This paper focuses on the classification performance of quartz particles in the enhanced gravity field. The classification efficiency of single quartz particles decreased then increased with the increase of rotational angular velocity, while it decreased with the increase of backwash water pressure. The classification efficiency of -0.5 +0.25mm, -0.25 +0.125mm, -0.125 +0.074mm, -0.074 +0.045mm and -0.045mm quartz was higher than the corresponding narrow size of -0.5mm quartz in general. The “fish-hook” phenomenon appeared in the partition curve of -0.5mm quartz under small/large rotational angular velocity and small backwash water pressure, and the dip point could be found in fine particles region, which indicated that the “fish-hook” was closely related with operating parameters and particle size. A medium rotational angular velocity and larger backwash water pressure could be helpful to avoid the appearance of “fish-hook” in fine particles region and achieve a better classification performance. This investigation is beneficial to understand the regularity of particle migration in the enhanced gravity field.","PeriodicalId":20169,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"11 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/ppmp/175242","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The classification and separation of minerals happen in the traditional gravity separation simultaneously. This paper focuses on the classification performance of quartz particles in the enhanced gravity field. The classification efficiency of single quartz particles decreased then increased with the increase of rotational angular velocity, while it decreased with the increase of backwash water pressure. The classification efficiency of -0.5 +0.25mm, -0.25 +0.125mm, -0.125 +0.074mm, -0.074 +0.045mm and -0.045mm quartz was higher than the corresponding narrow size of -0.5mm quartz in general. The “fish-hook” phenomenon appeared in the partition curve of -0.5mm quartz under small/large rotational angular velocity and small backwash water pressure, and the dip point could be found in fine particles region, which indicated that the “fish-hook” was closely related with operating parameters and particle size. A medium rotational angular velocity and larger backwash water pressure could be helpful to avoid the appearance of “fish-hook” in fine particles region and achieve a better classification performance. This investigation is beneficial to understand the regularity of particle migration in the enhanced gravity field.
期刊介绍:
Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy.
Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal.
Topics of interest
Analytical techniques and applied mineralogy
Computer applications
Comminution, classification and sorting
Froth flotation
Solid-liquid separation
Gravity concentration
Magnetic and electric separation
Hydro and biohydrometallurgy
Extractive metallurgy
Recycling and mineral wastes
Environmental aspects of mineral processing
and other mineral processing related subjects.