{"title":"Statistical Analysis of Covid-19 Data using the Odd Log Logistic Kumaraswamy Distribution","authors":"F. Opone, Kadir Karakaya, Ngozi O. Ubaka","doi":"10.19139/soic-2310-5070-1572","DOIUrl":null,"url":null,"abstract":"This paper presents a statistical analysis of Covid-19 data using the Odd log logistic kumaraswamy Kumaraswamy (OLLK) distribution. Some mathematical properties of the proposed OLLK distribution such as the survival and hazard functions, quantile function, ordinary and incomplete moments, moment generating function, probability weighted moment, distribution of order statistic and Renyi entropy were derived. Five estimators are examined for unknown model parameters. The performance of the estimators is compared using an extensive simulation study based on the bias and mean square error criteria. Two Covid-19 data sets representing the percentage of daily recoveries of Covid-19 patients are used to illustrate the applicability of the proposed OLLK distribution. Results revealed that the OLLK distribution is a better alternative to some existing models with bounded support.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"19 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a statistical analysis of Covid-19 data using the Odd log logistic kumaraswamy Kumaraswamy (OLLK) distribution. Some mathematical properties of the proposed OLLK distribution such as the survival and hazard functions, quantile function, ordinary and incomplete moments, moment generating function, probability weighted moment, distribution of order statistic and Renyi entropy were derived. Five estimators are examined for unknown model parameters. The performance of the estimators is compared using an extensive simulation study based on the bias and mean square error criteria. Two Covid-19 data sets representing the percentage of daily recoveries of Covid-19 patients are used to illustrate the applicability of the proposed OLLK distribution. Results revealed that the OLLK distribution is a better alternative to some existing models with bounded support.