Gender Classification of Twitter Users Using Convolutional Neural Network

F. A. Mubarok, M. Reza Faisal, D. Kartini, D. T. Nugrahadi, T. H. Saragih
{"title":"Gender Classification of Twitter Users Using Convolutional Neural Network","authors":"F. A. Mubarok, M. Reza Faisal, D. Kartini, D. T. Nugrahadi, T. H. Saragih","doi":"10.30812/matrik.v23i1.3318","DOIUrl":null,"url":null,"abstract":"Social media has become a place for social media analysts to obtain data to gain deeper insights and understanding of user behavior, trends, public opinion, and patterns associated with social media usage. Twitter is one of the most popular social media platforms where users can share messages or ”tweets” in a short text format. However, on Twitter, user information such as gender is not shown, but without realizing it or not, there is information about it in an unstructured manner. In social media analytics, gender is one of the important data that someone likes, so this research was conducted to determine the best accuracy for gender classification. The purpose of this study was to determine whether using combined data can improve the accuracy of gender classification using data from Twitter, tweets, and descriptions. The method used was word vector representation using word2vec and the application of a 2D Convolutional Neural Network (CNN) model. Word2vec was used to generate word vector representations that take into account the context and meaning of words in the text. The 2D CNN model extracted features from the word vector representation and performed gender classification. The research aimed to compare tweet data, descriptions, and a combination of tweets and descriptions to find the most accurate. The result of this study was that combined data between tweets and","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v23i1.3318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Social media has become a place for social media analysts to obtain data to gain deeper insights and understanding of user behavior, trends, public opinion, and patterns associated with social media usage. Twitter is one of the most popular social media platforms where users can share messages or ”tweets” in a short text format. However, on Twitter, user information such as gender is not shown, but without realizing it or not, there is information about it in an unstructured manner. In social media analytics, gender is one of the important data that someone likes, so this research was conducted to determine the best accuracy for gender classification. The purpose of this study was to determine whether using combined data can improve the accuracy of gender classification using data from Twitter, tweets, and descriptions. The method used was word vector representation using word2vec and the application of a 2D Convolutional Neural Network (CNN) model. Word2vec was used to generate word vector representations that take into account the context and meaning of words in the text. The 2D CNN model extracted features from the word vector representation and performed gender classification. The research aimed to compare tweet data, descriptions, and a combination of tweets and descriptions to find the most accurate. The result of this study was that combined data between tweets and
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用卷积神经网络对 Twitter 用户进行性别分类
社交媒体已成为社交媒体分析师获取数据的地方,以便深入洞察和了解用户行为、趋势、舆论以及与社交媒体使用相关的模式。Twitter 是最流行的社交媒体平台之一,用户可以在该平台上以简短的文本格式分享信息或 "推文"。然而,在 Twitter 上,用户的性别等信息并未显示,但在不知不觉中,却以非结构化的方式存在着相关信息。在社交媒体分析中,性别是人们喜欢的重要数据之一,因此本研究旨在确定性别分类的最佳准确性。本研究的目的是利用 Twitter、推文和描述中的数据,确定使用组合数据是否能提高性别分类的准确性。使用的方法是使用 word2vec 进行词向量表示,并应用二维卷积神经网络 (CNN) 模型。Word2vec 用于生成考虑到文本中单词的上下文和含义的单词向量表示。二维卷积神经网络模型从词向量表示中提取特征并进行性别分类。研究旨在比较推文数据、描述以及推文和描述的组合,以找到最准确的方法。研究结果表明,推文和描述之间的组合数据
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of Port Knocking with Telegram Notifications to Protect Against Scanner Vulnerabilities Intelligent System for Internet of Things-Based Building Fire Safety with Naive Bayes Algorithm Detecting Disaster Trending Topics on Indonesian Tweets Using BNgram Electronic Tourism Using Decision Support Systems to Optimize the Trips Optimizing Inventory with Frequent Pattern Growth Algorithm for Small and Medium Enterprises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1