Facile Preparation and Characterization of Alginate and Triton X-100 Zinc Phosphate modified Surface Nanocrystals as a Novel Anti-corrosive and Antibacterial agent
Arezoo Mohammadkhani, Sadjadi Mirabdullah Seyed, N. Farhadyar, F. Mohammadkhani
{"title":"Facile Preparation and Characterization of Alginate and Triton X-100 Zinc Phosphate modified Surface Nanocrystals as a Novel Anti-corrosive and Antibacterial agent","authors":"Arezoo Mohammadkhani, Sadjadi Mirabdullah Seyed, N. Farhadyar, F. Mohammadkhani","doi":"10.25303/1812rjbt910101","DOIUrl":null,"url":null,"abstract":"In this study, two surface-modified antibacterial and anti-corrosive nanoparticles (ZnP-T, ZnP-ALG) were synthesized by facile and efficient one-step ultrasonic synthesis method. Nanocrystals were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared (FT-IR), Energy Dispersive X-Ray Analysis (EDX), Scanning Electron Microscopy (SEM) and Transmission electron microscopy (TEM). The TEM image showed that the product had good dispersion with a particle size of 10-23, 15–32 nm respectively. Antibacterial and cytocompatibility properties were studied by agar diffusion, in vitro viability and cytotoxicity assay (MTT) and colony-forming-unit (CFU). Antibacterial rate of the ZnP-T and ZnP-ALG nanoparticles reached near 100% and cell viability was near 100%. The corrosion resistance of ZnP-T and ZnP-ALG was evaluated by the electrochemical impedance spectroscopy (EIS) approach. Nyquist diagrams demonstrated that the ZnP-ALG sample had better protection than the ZnP-T sample at all immersion time . The frequency phase angle of the ZnP-ALG sample (θ10 kHz) has a greater value compared with the ZnP-T case.","PeriodicalId":48695,"journal":{"name":"Research Journal of Biotechnology","volume":"11 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Journal of Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25303/1812rjbt910101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, two surface-modified antibacterial and anti-corrosive nanoparticles (ZnP-T, ZnP-ALG) were synthesized by facile and efficient one-step ultrasonic synthesis method. Nanocrystals were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared (FT-IR), Energy Dispersive X-Ray Analysis (EDX), Scanning Electron Microscopy (SEM) and Transmission electron microscopy (TEM). The TEM image showed that the product had good dispersion with a particle size of 10-23, 15–32 nm respectively. Antibacterial and cytocompatibility properties were studied by agar diffusion, in vitro viability and cytotoxicity assay (MTT) and colony-forming-unit (CFU). Antibacterial rate of the ZnP-T and ZnP-ALG nanoparticles reached near 100% and cell viability was near 100%. The corrosion resistance of ZnP-T and ZnP-ALG was evaluated by the electrochemical impedance spectroscopy (EIS) approach. Nyquist diagrams demonstrated that the ZnP-ALG sample had better protection than the ZnP-T sample at all immersion time . The frequency phase angle of the ZnP-ALG sample (θ10 kHz) has a greater value compared with the ZnP-T case.
期刊介绍:
We invite you to contribute Research Papers / Short Communications / Review Papers:
-In any field of Biotechnology, Biochemistry, Microbiology and Industrial Microbiology, Soil Technology, Agriculture Biotechnology.
-in any field related to Food Biotechnology, Nutrition Biotechnology, Genetic Engineering and Commercial Biotechnology.
-in any field of Biotechnology related to Drugs and Pharmaceutical products for human beings, animals and plants.
-in any field related to Environmental Biotechnolgy, Waste Treatment of Liquids, Soilds and Gases; Sustainability.
-in inter-realted field of Chemical Sciences, Biological Sciences, Environmental Sciences and Life Sciences.
-in any field related to Biotechnological Engineering, Industrial Biotechnology and Instrumentation.
-in any field related to Nano-technology.
-in any field related to Plant Biotechnology.