FedQMIX: Communication-efficient federated learning via multi-agent reinforcement learning

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS High-Confidence Computing Pub Date : 2023-11-23 DOI:10.1016/j.hcc.2023.100179
Shaohua Cao , Hanqing Zhang , Tian Wen , Hongwei Zhao , Quancheng Zheng , Weishan Zhang , Danyang Zheng
{"title":"FedQMIX: Communication-efficient federated learning via multi-agent reinforcement learning","authors":"Shaohua Cao ,&nbsp;Hanqing Zhang ,&nbsp;Tian Wen ,&nbsp;Hongwei Zhao ,&nbsp;Quancheng Zheng ,&nbsp;Weishan Zhang ,&nbsp;Danyang Zheng","doi":"10.1016/j.hcc.2023.100179","DOIUrl":null,"url":null,"abstract":"<div><p>Since the data samples on client devices are usually non-independent and non-identically distributed (non-IID), this will challenge the convergence of federated learning (FL) and reduce communication efficiency. This paper proposes FedQMIX, a node selection algorithm based on multi-agent reinforcement learning(MARL), to address these challenges. Firstly, we observe a connection between model weights and data distribution, and a clustering algorithm can group clients with similar data distribution into the same cluster. Secondly, we propose a QMIX-based mechanism that learns to select devices from clustering results in each communication round to maximize the reward, penalizing the use of more communication rounds and thereby improving the communication efficiency of FL. Finally, experiments show that FedQMIX can reduce the number of communication rounds by 11% and 30% on the MNIST and CIFAR-10 datasets, respectively, compared to the baseline algorithm (Favor).</p></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"4 2","pages":"Article 100179"},"PeriodicalIF":3.2000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667295223000776/pdfft?md5=9424588f5b02e7d1cae86ff00cee768b&pid=1-s2.0-S2667295223000776-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295223000776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Since the data samples on client devices are usually non-independent and non-identically distributed (non-IID), this will challenge the convergence of federated learning (FL) and reduce communication efficiency. This paper proposes FedQMIX, a node selection algorithm based on multi-agent reinforcement learning(MARL), to address these challenges. Firstly, we observe a connection between model weights and data distribution, and a clustering algorithm can group clients with similar data distribution into the same cluster. Secondly, we propose a QMIX-based mechanism that learns to select devices from clustering results in each communication round to maximize the reward, penalizing the use of more communication rounds and thereby improving the communication efficiency of FL. Finally, experiments show that FedQMIX can reduce the number of communication rounds by 11% and 30% on the MNIST and CIFAR-10 datasets, respectively, compared to the baseline algorithm (Favor).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FedQMIX:通过多代理强化学习实现通信效率高的联合学习
由于客户端设备上的数据样本通常是非独立和非同分布的(non-IID),这将对联合学习(FL)的收敛性提出挑战,并降低通信效率。本文提出了一种基于多代理强化学习(MARL)的节点选择算法 FedQMIX,以应对这些挑战。首先,我们观察到模型权重与数据分布之间存在联系,而聚类算法可以将数据分布相似的客户端归入同一个群组。其次,我们提出了一种基于 QMIX 的机制,该机制在每一轮通信中学习从聚类结果中选择设备,使奖励最大化,惩罚使用更多通信轮次,从而提高 FL 的通信效率。最后,实验表明,与基线算法(Favor)相比,FedQMIX 在 MNIST 和 CIFAR-10 数据集上可分别减少 11% 和 30% 的通信轮数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
Erratum to “Exploring Personalized Internet of Things (PIoT), social connectivity, and Artificial Social Intelligence (ASI): A survey” [High-Confidence Computing 4 (2024) 100242] Identity-based threshold (multi) signature with private accountability for privacy-preserving blockchain Navigating the Digital Twin Network landscape: A survey on architecture, applications, privacy and security Erratum to “An effective digital audio watermarking using a deep convolutional neural network with a search location optimization algorithm for improvement in Robustness and Imperceptibility” [High-Confid. Comput. 3 (2023) 100153] A lightweight practical consensus mechanism for supply chain blockchain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1