M.S. Abdul Karim , N. Zainol , N.H. Aziz , N.S. Mat Hussain , N.A.T. Yusof
{"title":"Dielectric material preparation from pineapple leaf fiber based on two-level factorial analysis and its morphological structure","authors":"M.S. Abdul Karim , N. Zainol , N.H. Aziz , N.S. Mat Hussain , N.A.T. Yusof","doi":"10.1016/j.jer.2023.11.022","DOIUrl":null,"url":null,"abstract":"<div><p>Natural fiber has earned great attention for its discovery as a green material in dielectric composites. Their excellent dielectric properties have granted them the great capability to be used in high dielectric composites. Hence, this study attempts to determine the most influential factor contributing to the permittivity of pineapple leaf fibers and to examine the morphological structure of the developed fibers. The two-level factorial analysis was applied to determine the significant, influential factors and the best conditions contributing to the permittivity value of fiber. The factors include the pineapple leaf-to-soda ratio (1:5 and 1:10), soda concentration (5–10 wt%), temperature (60–100 ℃), and pulping time (45–75 min). The fiber was extracted from the pineapple leaf through the soda pulping method, and the content was analyzed by the Kurschner-Hanack method. Based on the analysis, the pineapple leaf-to-soda ratio was observed as the most significant factor contributing to the permittivity value of fiber, with an 8.86% contribution. The best conditions were suggested at a 1:10 pineapple leaf-to-soda ratio, 5 wt% soda concentration, 100 ℃ temperature, and 45 min of pulping time, contributing to the 1.85 permittivity value of pineapple leaf fiber. The scanning electron microscope images of the material under test indicate that the morphological structures play a crucial part in determining the permittivity value of fiber. Therefore, with suitable processing factors, pineapple leaf fiber can be a great dielectric material used in many engineering applications.</p></div>","PeriodicalId":48803,"journal":{"name":"Journal of Engineering Research","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2307187723003279/pdfft?md5=1ab2300aa4981e5923b366e98964314e&pid=1-s2.0-S2307187723003279-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2307187723003279","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Natural fiber has earned great attention for its discovery as a green material in dielectric composites. Their excellent dielectric properties have granted them the great capability to be used in high dielectric composites. Hence, this study attempts to determine the most influential factor contributing to the permittivity of pineapple leaf fibers and to examine the morphological structure of the developed fibers. The two-level factorial analysis was applied to determine the significant, influential factors and the best conditions contributing to the permittivity value of fiber. The factors include the pineapple leaf-to-soda ratio (1:5 and 1:10), soda concentration (5–10 wt%), temperature (60–100 ℃), and pulping time (45–75 min). The fiber was extracted from the pineapple leaf through the soda pulping method, and the content was analyzed by the Kurschner-Hanack method. Based on the analysis, the pineapple leaf-to-soda ratio was observed as the most significant factor contributing to the permittivity value of fiber, with an 8.86% contribution. The best conditions were suggested at a 1:10 pineapple leaf-to-soda ratio, 5 wt% soda concentration, 100 ℃ temperature, and 45 min of pulping time, contributing to the 1.85 permittivity value of pineapple leaf fiber. The scanning electron microscope images of the material under test indicate that the morphological structures play a crucial part in determining the permittivity value of fiber. Therefore, with suitable processing factors, pineapple leaf fiber can be a great dielectric material used in many engineering applications.
期刊介绍:
Journal of Engineering Research (JER) is a international, peer reviewed journal which publishes full length original research papers, reviews, case studies related to all areas of Engineering such as: Civil, Mechanical, Industrial, Electrical, Computer, Chemical, Petroleum, Aerospace, Architectural, Biomedical, Coastal, Environmental, Marine & Ocean, Metallurgical & Materials, software, Surveying, Systems and Manufacturing Engineering. In particular, JER focuses on innovative approaches and methods that contribute to solving the environmental and manufacturing problems, which exist primarily in the Arabian Gulf region and the Middle East countries. Kuwait University used to publish the Journal "Kuwait Journal of Science and Engineering" (ISSN: 1024-8684), which included Science and Engineering articles since 1974. In 2011 the decision was taken to split KJSE into two independent Journals - "Journal of Engineering Research "(JER) and "Kuwait Journal of Science" (KJS).