Effect of aeration on low-substrate CANON process

IF 3.7 Q1 WATER RESOURCES Water science and engineering Pub Date : 2023-11-22 DOI:10.1016/j.wse.2023.11.005
Qiong-qiong Xia, Wei Shang, Xing-can Zheng, Wen-an Zhang, Ya-xiong Wang, Yong-li Sun, Peng-feng Li
{"title":"Effect of aeration on low-substrate CANON process","authors":"Qiong-qiong Xia,&nbsp;Wei Shang,&nbsp;Xing-can Zheng,&nbsp;Wen-an Zhang,&nbsp;Ya-xiong Wang,&nbsp;Yong-li Sun,&nbsp;Peng-feng Li","doi":"10.1016/j.wse.2023.11.005","DOIUrl":null,"url":null,"abstract":"<div><p>The completely autotrophic nitrogen removal over nitrite (CANON) is a new type of nitrogen removal process developed in recent years. The control of dissolved oxygen (DO) in this process is relatively stringent, especially in low-substrate wastewater treatment. However, the results of studies on the operation of the process in different aeration modes are still controversial, and investigations on biofilm type CANON reactors are limited. In this study, a pilot-scale CANON bioreactor filled with suspended carriers was investigated on the treatment of wastewater at low ammonium concentrations, and the effect of the aeration mode on autotrophic nitrogen removal was evaluated. Seven conditions with various aeration on/off times and DO levels were tested. The results showed that an intermittent aeration with a 20-min/20-min aeration on/off time and DO concentrations of 1.0–1.3 mg/L at the end of the aeration period was appropriate, potentially inhibiting nitrite oxidizing bacteria (NOB) and keeping the total nitrogen (TN) removal rate at a relatively high level of 76.7% ± 2.5%. In the optimal aeration mode, the reactor achieved effluent TN and <span><math><msubsup><mtext>NH</mtext><mn>4</mn><mo>+</mo></msubsup><mtext>-</mtext><mi>N</mi></math></span> concentrations of (11.1 ± 3.3) mg/L and (3.6 ± 2.3) mg/L, respectively, with a hydraulic retention time of 12 h and an influent <span><math><msubsup><mtext>NH</mtext><mn>4</mn><mo>+</mo></msubsup><mtext>-</mtext><mi>N</mi></math></span> concentration of (48.6 ± 9.4) mg/L at 30.1°C ± 2.2°C. The results of metagenomic sequencing for microorganisms on carriers indicated that the main nitrogen removal bacteria in the reactor were Proteobacteria, Planctomycetes, and Nitrospirae. The NOB genus <em>Nitrospira</em> was completely inhibited by intermittent aeration. <em>Candidatus Kuenenia</em> had strong adaptability to low-concentration wastewater.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237023001163/pdfft?md5=9279a43348416861ef64f9c92d14a4d7&pid=1-s2.0-S1674237023001163-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237023001163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

The completely autotrophic nitrogen removal over nitrite (CANON) is a new type of nitrogen removal process developed in recent years. The control of dissolved oxygen (DO) in this process is relatively stringent, especially in low-substrate wastewater treatment. However, the results of studies on the operation of the process in different aeration modes are still controversial, and investigations on biofilm type CANON reactors are limited. In this study, a pilot-scale CANON bioreactor filled with suspended carriers was investigated on the treatment of wastewater at low ammonium concentrations, and the effect of the aeration mode on autotrophic nitrogen removal was evaluated. Seven conditions with various aeration on/off times and DO levels were tested. The results showed that an intermittent aeration with a 20-min/20-min aeration on/off time and DO concentrations of 1.0–1.3 mg/L at the end of the aeration period was appropriate, potentially inhibiting nitrite oxidizing bacteria (NOB) and keeping the total nitrogen (TN) removal rate at a relatively high level of 76.7% ± 2.5%. In the optimal aeration mode, the reactor achieved effluent TN and NH4+-N concentrations of (11.1 ± 3.3) mg/L and (3.6 ± 2.3) mg/L, respectively, with a hydraulic retention time of 12 h and an influent NH4+-N concentration of (48.6 ± 9.4) mg/L at 30.1°C ± 2.2°C. The results of metagenomic sequencing for microorganisms on carriers indicated that the main nitrogen removal bacteria in the reactor were Proteobacteria, Planctomycetes, and Nitrospirae. The NOB genus Nitrospira was completely inhibited by intermittent aeration. Candidatus Kuenenia had strong adaptability to low-concentration wastewater.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
曝气对低基质 CANON 工艺的影响
亚硝酸盐完全自养脱氮(CANON)是近年来发展起来的一种新型脱氮工艺。该工艺对溶解氧(DO)的控制相对严格,特别是在低底质废水处理中。然而,有关该工艺在不同曝气模式下运行的研究结果仍存在争议,对生物膜型 CANON 反应器的研究也很有限。在本研究中,研究了一个充满悬浮载体的中试规模 CANON 生物反应器处理低氨浓度废水的情况,并评估了曝气模式对自养脱氮的影响。测试了七种不同曝气开/关时间和溶解氧水平的条件。结果表明,曝气开/关时间为 20 分钟/20 分钟,曝气结束时溶解氧浓度为 1.0-1.3 毫克/升的间歇曝气模式是合适的,有可能抑制亚硝酸盐氧化菌(NOB),并将总氮(TN)去除率保持在 76.7% ± 2.5% 的较高水平。在最佳曝气模式下,反应器的出水 TN 和 NH4+-N 浓度分别为 (11.1 ± 3.3) mg/L 和 (3.6 ± 2.3) mg/L,水力停留时间为 12 h,进水 NH4+-N 浓度为 (48.6 ± 9.4) mg/L,温度为 30.1°C ± 2.2°C。对载体上的微生物进行元基因组测序的结果表明,反应器中的主要脱氮菌为变形菌、平面菌和硝化细菌。间歇性曝气完全抑制了 NOB 属硝化螺菌。Kuenenia 菌对低浓度废水有很强的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
5.00%
发文量
573
审稿时长
50 weeks
期刊介绍: Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.
期刊最新文献
Trichoderma aureoviride hyphal pellets embedded in corncob-sodium alginate matrix for efficient uranium(VI) biosorption from aqueous solutions Microbial community diversity during algal inhibition using slow-release microcapsules of tea polyphenols Influence of breach parameter models on hazard classification of off-stream reservoirs Biodegradation of cresyl diphenyl phosphate in anaerobic activated sludge: Degradation characteristics, microbial community succession, and toxicity assessment Superior decomposition of xenobiotic RB5 dye using three-dimensional electrochemical treatment: Response surface methodology modelling, artificial intelligence, and machine learning-based optimisation approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1