Robustness in formation control of mobile robots using leader-follower method

S. Oh-hara, Atsushi Fujimori
{"title":"Robustness in formation control of mobile robots using leader-follower method","authors":"S. Oh-hara, Atsushi Fujimori","doi":"10.1177/16878132231209708","DOIUrl":null,"url":null,"abstract":"This paper presents the robustness in formation control of multiple mobile robots using leader-follower method. The uncertainty considered is the measured error which is included in the relative state. The robust stability conditions against the relative state error are derived by Lyapunov’s stability theory (direct method). We also obtain the formation steady-state deviation when formation stability is ensured. The formation control environment is constructed on Simulink. The validity of the stability condition and the steady-state deviation is demonstrated by numerical simulation. It is seen that the L-F method provides a robust control law against the relative state error although large formation steady-state deviation is occurred in some cases.","PeriodicalId":502561,"journal":{"name":"Advances in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/16878132231209708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the robustness in formation control of multiple mobile robots using leader-follower method. The uncertainty considered is the measured error which is included in the relative state. The robust stability conditions against the relative state error are derived by Lyapunov’s stability theory (direct method). We also obtain the formation steady-state deviation when formation stability is ensured. The formation control environment is constructed on Simulink. The validity of the stability condition and the steady-state deviation is demonstrated by numerical simulation. It is seen that the L-F method provides a robust control law against the relative state error although large formation steady-state deviation is occurred in some cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用领导者-跟随者方法实现移动机器人编队控制的鲁棒性
本文介绍了使用领导者-跟随者方法对多个移动机器人进行编队控制的鲁棒性。所考虑的不确定性是包含在相对状态中的测量误差。通过 Lyapunov 稳定性理论(直接法)推导出了针对相对状态误差的鲁棒稳定性条件。我们还得到了编队稳定性得到保证时的编队稳态偏差。在 Simulink 上构建了编队控制环境。通过数值模拟证明了稳定条件和稳态偏差的有效性。结果表明,尽管在某些情况下会出现较大的编队稳态偏差,但 L-F 方法提供了一个针对相对状态误差的鲁棒控制法则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of Al2O3 nanoparticle concentration and cutting parameters in hard milling under nanofluid MQL environment Analysis of the valve positioner pilot valve hole plugging Integrated design of insertions-extractions performance and contact reliability of spring-wire socket electrical connector Wear mechanisms of diamond segmenta in cutting of carbon fiber reinforced cement-based composite and optimizing in parameters Thermal transport exploration of ternary hybrid nanofluid flow in a non-Newtonian model with homogeneous-heterogeneous chemical reactions induced by vertical cylinder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1