{"title":"Quantum stacked autoencoder fault diagnosis model for bearing faults","authors":"Tianyi Yu, Shunming Li, Jiantao Lu","doi":"10.1784/insi.2023.65.11.631","DOIUrl":null,"url":null,"abstract":"The use of neural network models to monitor bearing vibration signals can easily be affected by noise, which leads to a decrease in the model test accuracy. Therefore, the existence of noise problems increases the requirements for non-linear mapping capability and robustness of deep neural network (DNN) models. In order to deal with the noise problem, the concept of qubit neurons is introduced into a deep learning stacked autoencoder (SAE) model, and a quantum stacked autoencoder (QSAE) model based on qubits and quantum gates is proposed. The properties of SAE layer-by-layer coding and the arithmetic of qubit neurons are combined in the QSAE. The quantum state signal is taken as the input signal to the encoder and the coding activation function and coding weight matrix are redefined by quantum-controlled non-gates and quantum revolving gates, so that the quantum state signal can be coded layer by layer. Experimental results show that the QSAE can train and diagnose noisy experimental data and maintain high test accuracy in an anti-attack test. This shows that the QSAE has non-linear mapping capability and robustness.","PeriodicalId":344397,"journal":{"name":"Insight - Non-Destructive Testing and Condition Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insight - Non-Destructive Testing and Condition Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1784/insi.2023.65.11.631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The use of neural network models to monitor bearing vibration signals can easily be affected by noise, which leads to a decrease in the model test accuracy. Therefore, the existence of noise problems increases the requirements for non-linear mapping capability and robustness of deep neural network (DNN) models. In order to deal with the noise problem, the concept of qubit neurons is introduced into a deep learning stacked autoencoder (SAE) model, and a quantum stacked autoencoder (QSAE) model based on qubits and quantum gates is proposed. The properties of SAE layer-by-layer coding and the arithmetic of qubit neurons are combined in the QSAE. The quantum state signal is taken as the input signal to the encoder and the coding activation function and coding weight matrix are redefined by quantum-controlled non-gates and quantum revolving gates, so that the quantum state signal can be coded layer by layer. Experimental results show that the QSAE can train and diagnose noisy experimental data and maintain high test accuracy in an anti-attack test. This shows that the QSAE has non-linear mapping capability and robustness.