Tunable optical buffer based on VO2/Si hybrid waveguide by optically induced phase transition

IF 1.1 4区 工程技术 Q4 OPTICS Optical Engineering Pub Date : 2023-11-01 DOI:10.1117/1.OE.62.11.117102
Zhen Yuan, Yi Li, Wenyan Dai, Ke Lin, Weiye He, Haoting Zhang, Chang Xue, Junyi Yan, Jincheng Mei, Jiaqing Zhuang, Xingping Wang
{"title":"Tunable optical buffer based on VO2/Si hybrid waveguide by optically induced phase transition","authors":"Zhen Yuan, Yi Li, Wenyan Dai, Ke Lin, Weiye He, Haoting Zhang, Chang Xue, Junyi Yan, Jincheng Mei, Jiaqing Zhuang, Xingping Wang","doi":"10.1117/1.OE.62.11.117102","DOIUrl":null,"url":null,"abstract":"Abstract. A tunable optical buffer composed of a side-coupled racetrack microring resonator (RMRR) sequence and phase change material vanadium dioxide (VO2) films has been designed and simulated with pass-through and drop functions. By optically induced phase transition of VO2, the number of coupled RMRRs is dynamically controlled to realize the required delay time and the ultra-fast response. Simulation results show that the buffer with 12 RMRRs achieves a tunable delay of up to 309.6 ps, a working bandwidth of 306 GHz, and a super-fast response of 0.62 ps. The delay loss and power consumption are 0.012  dB  /  ps and 0.194  mW  /  ps, respectively. These findings suggest a new approach to realizing tunable delay in all-optical networks.","PeriodicalId":19561,"journal":{"name":"Optical Engineering","volume":"66 1","pages":"117102 - 117102"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.OE.62.11.117102","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. A tunable optical buffer composed of a side-coupled racetrack microring resonator (RMRR) sequence and phase change material vanadium dioxide (VO2) films has been designed and simulated with pass-through and drop functions. By optically induced phase transition of VO2, the number of coupled RMRRs is dynamically controlled to realize the required delay time and the ultra-fast response. Simulation results show that the buffer with 12 RMRRs achieves a tunable delay of up to 309.6 ps, a working bandwidth of 306 GHz, and a super-fast response of 0.62 ps. The delay loss and power consumption are 0.012  dB  /  ps and 0.194  mW  /  ps, respectively. These findings suggest a new approach to realizing tunable delay in all-optical networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过光诱导相变实现基于 VO2/Si 混合波导的可调谐光缓冲器
摘要。设计了一种由侧耦合赛道微波谐振器(RMRR)序列和相变材料二氧化钒(VO2)薄膜组成的可调谐光缓冲器,并模拟了其传递和下降功能。通过 VO2 的光学诱导相变,可动态控制耦合 RMRR 的数量,以实现所需的延迟时间和超快响应。仿真结果表明,具有 12 个 RMRR 的缓冲器可实现高达 309.6 ps 的可调延迟、306 GHz 的工作带宽和 0.62 ps 的超快响应。延迟损耗和功耗分别为 0.012 dB / ps 和 0.194 mW / ps。这些发现为在全光网络中实现可调延迟提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Engineering
Optical Engineering 工程技术-光学
CiteScore
2.70
自引率
7.70%
发文量
393
审稿时长
2.6 months
期刊介绍: Optical Engineering publishes peer-reviewed papers reporting on research and development in optical science and engineering and the practical applications of known optical science, engineering, and technology.
期刊最新文献
Lensless 3D-imaging by referenceless phase holography Cost-effective, DIY, and open-source digital lensless holographic microscope with distortion correction Similarity study between speckle shearing phase and speckle correlation phase derivative using Riesz transform Multi-view occlusion removal in digital lensless holographic microscopy Lensless object classification in long wave infrared using random phase encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1