{"title":"A novel energy efficient IRS-relay network for ITS with Nakagami-m fading channels","authors":"Shaik Rajak , Inbarasan Muniraj , Poongundran Selvaprabhu , Vinoth Babu Kumaravelu , Md. Abdul Latif Sarker , Sunil Chinnadurai , Dong Seog Han","doi":"10.1016/j.icte.2023.11.005","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we have investigated the performance of energy efficiency (EE) for Intelligent Transportation Systems (ITS), which recently emerged and advanced to preserve speed as well as safe transportation expansion via a cooperative IRS-relay network. To improve the EE, the relay model has been integrated with an IRS block consisting of a number of passive reflective elements. We analyze the ITS in terms of EE, and achievable rate, with different signal-to-noise ratio (SNR) values under Nakagami-m fading channel conditions that help the system to implement in a practical scenario. From the numerical results it is noticed that the EE for the only relay, IRS, and proposed cooperative relay-IRS-aided network at SNR value of 100 dBm is 30, 17, and 48 bits/joule respectively. In addition, we compare the impact of multi-IRS with the proposed cooperative IRS-relay and conventional relay-supported ITS. Simulation results show that both the proposed cooperative IRS-relay-aided ITS network and multi-IRS-aided network outperform the relay-assisted ITS with the increase in SNR.</p></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 3","pages":"Pages 507-512"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405959523001480/pdfft?md5=0dab6f9a82eaa1ac09e78e02eb3a68ed&pid=1-s2.0-S2405959523001480-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959523001480","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we have investigated the performance of energy efficiency (EE) for Intelligent Transportation Systems (ITS), which recently emerged and advanced to preserve speed as well as safe transportation expansion via a cooperative IRS-relay network. To improve the EE, the relay model has been integrated with an IRS block consisting of a number of passive reflective elements. We analyze the ITS in terms of EE, and achievable rate, with different signal-to-noise ratio (SNR) values under Nakagami-m fading channel conditions that help the system to implement in a practical scenario. From the numerical results it is noticed that the EE for the only relay, IRS, and proposed cooperative relay-IRS-aided network at SNR value of 100 dBm is 30, 17, and 48 bits/joule respectively. In addition, we compare the impact of multi-IRS with the proposed cooperative IRS-relay and conventional relay-supported ITS. Simulation results show that both the proposed cooperative IRS-relay-aided ITS network and multi-IRS-aided network outperform the relay-assisted ITS with the increase in SNR.
期刊介绍:
The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.