Classification of material and surface roughness using polarimetric multispectral LiDAR

IF 1.1 4区 工程技术 Q4 OPTICS Optical Engineering Pub Date : 2023-11-01 DOI:10.1117/1.OE.62.11.114104
Yu Han, D. Salido-Monzú, A. Wieser
{"title":"Classification of material and surface roughness using polarimetric multispectral LiDAR","authors":"Yu Han, D. Salido-Monzú, A. Wieser","doi":"10.1117/1.OE.62.11.114104","DOIUrl":null,"url":null,"abstract":"Abstract. Multispectral light detection and ranging (LiDAR) is an emerging active remote sensing technique that combines distance and spectroscopy measurements. The reflectance spectrum is known to enable material classification. However, the spectrum also depends on other surface parameters, particularly roughness. Herein, we propose an extension of multispectral to polarimetric multispectral LiDAR and introduce unpolarized and linearly polarized reflectance spectra as additional features for classifying materials and roughness. Using a bench-top prototype instrument, we demonstrate the feasibility and benefit of acquiring unpolarized and linearly polarized reflectance spectra. We analyze and interpret the spectra obtained with two different spectral resolutions (10 and 40 nm) from measurements on test specimens consisting of five different materials with two different levels of surface roughness. Using a linear support vector machine, we demonstrate the potential of the different features for enabling material and roughness classification. We find that the unpolarized reflectance spectrum is well suited for classifying materials, and the linearly polarized one for classifying roughness. In both cases, the performance is much better than using a standard reflectance spectrum offered by multispectral LiDAR. We identify polarimetric multispectral LiDAR as a technology that may significantly enhance surface and material probing capabilities for remote sensing applications.","PeriodicalId":19561,"journal":{"name":"Optical Engineering","volume":"13 1","pages":"114104 - 114104"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.OE.62.11.114104","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Multispectral light detection and ranging (LiDAR) is an emerging active remote sensing technique that combines distance and spectroscopy measurements. The reflectance spectrum is known to enable material classification. However, the spectrum also depends on other surface parameters, particularly roughness. Herein, we propose an extension of multispectral to polarimetric multispectral LiDAR and introduce unpolarized and linearly polarized reflectance spectra as additional features for classifying materials and roughness. Using a bench-top prototype instrument, we demonstrate the feasibility and benefit of acquiring unpolarized and linearly polarized reflectance spectra. We analyze and interpret the spectra obtained with two different spectral resolutions (10 and 40 nm) from measurements on test specimens consisting of five different materials with two different levels of surface roughness. Using a linear support vector machine, we demonstrate the potential of the different features for enabling material and roughness classification. We find that the unpolarized reflectance spectrum is well suited for classifying materials, and the linearly polarized one for classifying roughness. In both cases, the performance is much better than using a standard reflectance spectrum offered by multispectral LiDAR. We identify polarimetric multispectral LiDAR as a technology that may significantly enhance surface and material probing capabilities for remote sensing applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用偏振多光谱激光雷达对材料和表面粗糙度进行分类
摘要多光谱光探测与测距(LiDAR)是一种新兴的主动遥感技术,它将距离测量与光谱测量相结合。众所周知,反射光谱可用于材料分类。然而,光谱还取决于其他表面参数,尤其是粗糙度。在此,我们建议将多光谱技术扩展到偏振多光谱激光雷达技术,并引入非偏振和线性偏振反射光谱作为材料和粗糙度分类的附加特征。利用台式原型仪器,我们展示了获取非偏振和线性偏振反射光谱的可行性和益处。我们分析并解释了使用两种不同的光谱分辨率(10 nm 和 40 nm)测量得到的光谱,这些光谱是对由五种不同材料组成的测试样本以及两种不同程度的表面粗糙度进行测量得到的。我们使用线性支持向量机证明了不同特征在材料和粗糙度分类方面的潜力。我们发现,非偏振反射光谱非常适合对材料进行分类,而线性偏振光谱则适合对粗糙度进行分类。在这两种情况下,其性能都比使用多光谱激光雷达提供的标准反射光谱要好得多。我们认为偏振多光谱激光雷达是一种可显著提高遥感应用中表面和材料探测能力的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Engineering
Optical Engineering 工程技术-光学
CiteScore
2.70
自引率
7.70%
发文量
393
审稿时长
2.6 months
期刊介绍: Optical Engineering publishes peer-reviewed papers reporting on research and development in optical science and engineering and the practical applications of known optical science, engineering, and technology.
期刊最新文献
Lensless 3D-imaging by referenceless phase holography Cost-effective, DIY, and open-source digital lensless holographic microscope with distortion correction Similarity study between speckle shearing phase and speckle correlation phase derivative using Riesz transform Multi-view occlusion removal in digital lensless holographic microscopy Lensless object classification in long wave infrared using random phase encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1