Nonlinear Cell Deformation Model

K. Mendová, M. Otahal, Matej Daniel
{"title":"Nonlinear Cell Deformation Model","authors":"K. Mendová, M. Otahal, Matej Daniel","doi":"10.2478/scjme-2023-0026","DOIUrl":null,"url":null,"abstract":"Abstract Cytoskeletal mechanics is a field that heavily relies on mathematical models to interpret experimental data related to forces and deformations. In this paper, we present a novel mathematical model designed specifically for analysing the mechanical properties of liposomes, which serve as model systems for studying biological membranes. Our model takes into account various factors such as stretching, bending, and contact adhesion during atomic force microscopy (AFM) indentation using a spherical tip. By applying our model to liposomes, we demonstrate that these structures exhibit nonlinear behaviour characterized by low stiffness at small deformations. Furthermore, we find that the mechanical response of liposomes is influenced by their size. Additionally, we observe that the presence of adhesion energy contributes to the generation of negative tip forces upon initial contact.","PeriodicalId":445896,"journal":{"name":"Strojnícky časopis - Journal of Mechanical Engineering","volume":"62 1","pages":"107 - 116"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojnícky časopis - Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/scjme-2023-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Cytoskeletal mechanics is a field that heavily relies on mathematical models to interpret experimental data related to forces and deformations. In this paper, we present a novel mathematical model designed specifically for analysing the mechanical properties of liposomes, which serve as model systems for studying biological membranes. Our model takes into account various factors such as stretching, bending, and contact adhesion during atomic force microscopy (AFM) indentation using a spherical tip. By applying our model to liposomes, we demonstrate that these structures exhibit nonlinear behaviour characterized by low stiffness at small deformations. Furthermore, we find that the mechanical response of liposomes is influenced by their size. Additionally, we observe that the presence of adhesion energy contributes to the generation of negative tip forces upon initial contact.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性细胞变形模型
摘要 细胞骨架力学是一个严重依赖数学模型来解释与力和变形有关的实验数据的领域。脂质体是研究生物膜的模型系统,在本文中,我们介绍了一种专门用于分析脂质体力学性质的新型数学模型。我们的模型考虑到了使用球形针尖进行原子力显微镜(AFM)压痕时的拉伸、弯曲和接触粘附等各种因素。通过将我们的模型应用于脂质体,我们证明这些结构表现出非线性行为,其特点是在小变形时具有低刚度。此外,我们还发现脂质体的机械响应受其大小的影响。此外,我们还观察到,粘附能的存在有助于在初始接触时产生负尖端力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scientific Basis for the Substantiation of Process Regulations for the Micro-Cutting of Hardened Gears Meshing Characteristics of Profile Shifted Cylindrical Quasi-Involute Arc-Tooth-Trace Gears. Part 2. Calculation Results Process Parameters and Conditions of Intensified Composting of Kitchen Biowaste Simulation of Energy Conversion Processes in Linear Electromagnetic Motors with Through Axial Channel Effect of Thermal Barriers on the Martensitic Transformation in a Bar Jominy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1