Robust Email Spam Filtering Using a Hybrid of Grey Wolf Optimiser and Naive Bayes Classifier

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Cybernetics and Information Technologies Pub Date : 2023-11-01 DOI:10.2478/cait-2023-0037
J. Zraqou, Adnan H. Al-Helali, Waleed Maqableh, H. Fakhouri, Wesam Alkhadour
{"title":"Robust Email Spam Filtering Using a Hybrid of Grey Wolf Optimiser and Naive Bayes Classifier","authors":"J. Zraqou, Adnan H. Al-Helali, Waleed Maqableh, H. Fakhouri, Wesam Alkhadour","doi":"10.2478/cait-2023-0037","DOIUrl":null,"url":null,"abstract":"Abstract Effective spam filtering plays a crucial role in enhancing user experience by sparing them from unwanted messages. This imperative underscores the importance of safeguarding email systems, prompting scholars across diverse fields to delve deeper into this subject. The primary objective of this research is to mitigate the disruptive effects of spam on email usage by introducing improved security measures compared to existing methods. This goal can be accomplished through the development of a novel spam filtering technique designed to prevent spam from infiltrating users’ inboxes. Consequently, a hybrid filtering approach that combines an information gain philter and a Wrapper Grey Wolf Optimizer feature selection algorithm with a Naive Bayes Classifier, is proposed, denoted as GWO-NBC. This research is rigorously tested using the WEKA software and the SPAMBASE dataset. Thorough performance evaluations demonstrated that the proposed approach surpasses existing solutions in terms of both security and accuracy.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2023-0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Effective spam filtering plays a crucial role in enhancing user experience by sparing them from unwanted messages. This imperative underscores the importance of safeguarding email systems, prompting scholars across diverse fields to delve deeper into this subject. The primary objective of this research is to mitigate the disruptive effects of spam on email usage by introducing improved security measures compared to existing methods. This goal can be accomplished through the development of a novel spam filtering technique designed to prevent spam from infiltrating users’ inboxes. Consequently, a hybrid filtering approach that combines an information gain philter and a Wrapper Grey Wolf Optimizer feature selection algorithm with a Naive Bayes Classifier, is proposed, denoted as GWO-NBC. This research is rigorously tested using the WEKA software and the SPAMBASE dataset. Thorough performance evaluations demonstrated that the proposed approach surpasses existing solutions in terms of both security and accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用灰狼优化器和奈非贝叶斯分类器的混合方法进行稳健的垃圾邮件过滤
摘要 有效的垃圾邮件过滤在提高用户体验方面发挥着至关重要的作用,使用户免受不需要的邮件的困扰。这种必要性凸显了保护电子邮件系统的重要性,促使不同领域的学者深入研究这一课题。本研究的主要目标是通过引入比现有方法更好的安全措施,减轻垃圾邮件对电子邮件使用的破坏性影响。这一目标可以通过开发一种新型垃圾邮件过滤技术来实现,该技术旨在防止垃圾邮件渗入用户的收件箱。因此,我们提出了一种混合过滤方法,该方法将信息增益法和 Wrapper Grey Wolf Optimizer 特征选择算法与 Naive Bayes 分类器相结合,称为 GWO-NBC。这项研究使用 WEKA 软件和 SPAMBASE 数据集进行了严格测试。全面的性能评估表明,所提出的方法在安全性和准确性方面都超越了现有的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
A Review on State-of-Art Blockchain Schemes for Electronic Health Records Management Degradation Recoloring Deutan CVD Image from Block SVD Watermark Integration Approaches for Heterogeneous Big Data: A Survey Efficient DenseNet Model with Fusion of Channel and Spatial Attention for Facial Expression Recognition Hybrid Edge Detection Methods in Image Steganography for High Embedding Capacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1