Hybrid GA–DeepAutoencoder–KNN Model for Employee Turnover Prediction

Chin Siang Lim, Esraa Faisal Malik, K. W. Khaw, Alhamzah Alnoor, Xinying Chew, Zhi Lin Chong, Mariam Al Akasheh
{"title":"Hybrid GA–DeepAutoencoder–KNN Model for Employee Turnover Prediction","authors":"Chin Siang Lim, Esraa Faisal Malik, K. W. Khaw, Alhamzah Alnoor, Xinying Chew, Zhi Lin Chong, Mariam Al Akasheh","doi":"10.19139/soic-2310-5070-1799","DOIUrl":null,"url":null,"abstract":"Organizations strive to retain their top talent and maintain workforce stability by predicting employee turnover and implementing preventive measures. Employee turnover prediction is a critical task, and accurate prediction models can help organizations take proactive measures to retain employees and reduce turnover rates. Therefore, in this study, we propose a hybrid genetic algorithm–autoencoder–k-nearest neighbor (GA–DeepAutoencoder–KNN) model to predict employee turnover. The proposed model combines a genetic algorithm, an autoencoder, and the KNN model to enhance prediction accuracy. The proposed model was evaluated and compared experimentally with the conventional DeepAutoencoder–KNN and k-nearest neighbor models. The results demonstrate that the GA–DeepAutoencoder–KNN model achieved a significantly higher accuracy score (90.95\\%) compared to the conventional models (86.48% and 88.37% accuracy, respectively).  Our findings are expected to assist HR teams identify at-risk employees and implement targeted retention strategies to improve the retention rate of valuable employees. The proposed model can be applied to various industries and organizations, making it a valuable tool for HR professionals to improve workforce stability and productivity.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"135 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Organizations strive to retain their top talent and maintain workforce stability by predicting employee turnover and implementing preventive measures. Employee turnover prediction is a critical task, and accurate prediction models can help organizations take proactive measures to retain employees and reduce turnover rates. Therefore, in this study, we propose a hybrid genetic algorithm–autoencoder–k-nearest neighbor (GA–DeepAutoencoder–KNN) model to predict employee turnover. The proposed model combines a genetic algorithm, an autoencoder, and the KNN model to enhance prediction accuracy. The proposed model was evaluated and compared experimentally with the conventional DeepAutoencoder–KNN and k-nearest neighbor models. The results demonstrate that the GA–DeepAutoencoder–KNN model achieved a significantly higher accuracy score (90.95\%) compared to the conventional models (86.48% and 88.37% accuracy, respectively).  Our findings are expected to assist HR teams identify at-risk employees and implement targeted retention strategies to improve the retention rate of valuable employees. The proposed model can be applied to various industries and organizations, making it a valuable tool for HR professionals to improve workforce stability and productivity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于预测员工流失率的混合 GA-DeepAutoencoder-KNN 模型
企业通过预测员工流失率并采取预防措施,努力留住顶尖人才,保持员工队伍的稳定性。员工流失预测是一项关键任务,准确的预测模型可以帮助企业采取积极措施留住员工并降低流失率。因此,在本研究中,我们提出了一种混合遗传算法-自动编码器-近邻(GA-DeepAutoencoder-KNN)模型来预测员工流失率。该模型结合了遗传算法、自动编码器和 KNN 模型,以提高预测准确性。实验对所提出的模型进行了评估,并与传统的 DeepAutoencoder-KNN 模型和 K-nearest neighbor 模型进行了比较。结果表明,与传统模型(准确率分别为 86.48% 和 88.37%)相比,GA-DeepAutoencoder-KNN 模型的准确率得分(90.95/%)明显更高。 我们的研究结果有望帮助人力资源团队识别高危员工,并实施有针对性的留任策略,从而提高有价值员工的留任率。所提出的模型可应用于各个行业和组织,是人力资源专业人员提高员工稳定性和工作效率的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-depth Analysis of von Mises Distribution Models: Understanding Theory, Applications, and Future Directions Bayesian and Non-Bayesian Estimation for The Parameter of Inverted Topp-Leone Distribution Based on Progressive Type I Censoring Comparative Evaluation of Imbalanced Data Management Techniques for Solving Classification Problems on Imbalanced Datasets An Algorithm for Solving Quadratic Programming Problems with an M-matrix An Effective Randomized Algorithm for Hyperspectral Image Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1