Equivalence of mass action and Poisson network SIR epidemic models

Q2 Agricultural and Biological Sciences Biomath Pub Date : 2023-10-21 DOI:10.55630/j.biomath.2023.11.237
Grzegorz A. Rempala
{"title":"Equivalence of mass action and Poisson network SIR epidemic models","authors":"Grzegorz A. Rempala","doi":"10.55630/j.biomath.2023.11.237","DOIUrl":null,"url":null,"abstract":"This brief note highlights a largely overlooked similarity between the SIR ordinary differential equations used for epidemics on the configuration model of a Poisson network and the classical mass-action SIR equations introduced nearly a century ago by Kermack and McKendrick. We demonstrate that the decline pattern in susceptibles is identical for both models. This equivalence carries practical implications: the susceptibles decay curve, often referred to as the epidemic or incidence curve, is frequently used in empirical studies to forecast epidemic dynamics. Although the curves for susceptibles align perfectly, those for infections do differ. Yet, the infection curves tend to converge and become almost indistinguishable in high-degree networks. In summary, our analysis suggests that under many practical scenarios, it's acceptable to use the classical SIR model as a close approximation to the Poisson SIR network model.","PeriodicalId":52247,"journal":{"name":"Biomath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55630/j.biomath.2023.11.237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

This brief note highlights a largely overlooked similarity between the SIR ordinary differential equations used for epidemics on the configuration model of a Poisson network and the classical mass-action SIR equations introduced nearly a century ago by Kermack and McKendrick. We demonstrate that the decline pattern in susceptibles is identical for both models. This equivalence carries practical implications: the susceptibles decay curve, often referred to as the epidemic or incidence curve, is frequently used in empirical studies to forecast epidemic dynamics. Although the curves for susceptibles align perfectly, those for infections do differ. Yet, the infection curves tend to converge and become almost indistinguishable in high-degree networks. In summary, our analysis suggests that under many practical scenarios, it's acceptable to use the classical SIR model as a close approximation to the Poisson SIR network model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模行动和泊松网络 SIR 流行病模型的等效性
这篇简短的文章强调了在泊松网络配置模型上用于流行病的 SIR 常微分方程与近一个世纪前由 Kermack 和 McKendrick 引入的经典质量作用 SIR 方程之间一个被忽视的相似性。我们证明,两种模型的易感人群下降模式是相同的。这种等效性具有实际意义:易感者衰减曲线通常被称为流行病或发病率曲线,在实证研究中经常被用来预测流行病的动态。虽然易感者的曲线完全一致,但感染者的曲线确实不同。然而,感染曲线趋于收敛,在高阶网络中几乎无法区分。总之,我们的分析表明,在许多实际情况下,使用经典 SIR 模型作为泊松 SIR 网络模型的近似值是可以接受的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomath
Biomath Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
6
审稿时长
20 weeks
期刊最新文献
Analysis of hemodynamic parameters on two-layered blood flow in a curved artery Comparative analysis of two chemostat models including substrate and biomass inhibitions Integrating mixed reality technologies in genomic data visualization and analysis for bioinformatics research Dynamical analysis combined with parameter identification for a model of infection in honeybee colonies with social immunity Parameter sensitivity analysis for CO-mediated sickle cell de-polymerization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1