Experimental Study on Material Removal Rate of 5% Fiber and 5% Novel Nano Carbon Particles Made of Tamarind Seed Reinforced Epoxy Composites During Drilling Process
{"title":"Experimental Study on Material Removal Rate of 5% Fiber and 5% Novel Nano Carbon Particles Made of Tamarind Seed Reinforced Epoxy Composites During Drilling Process","authors":"Chamrthy Subramanyam, Koushik Varma, Dharmalingam Satish Kumar","doi":"10.17756/nwj.2023-s3-021","DOIUrl":null,"url":null,"abstract":"Primary goal of this work is to examine rate of material removal rate (MRR) during VMC (Vertical machining center) machining of inventive epoxy composites supported with sustainable natural fiber (areca) (5%) and nanocarbon particles made of tamarind seeds (5%) in comparison to plain epoxy. The samples for both groups were produced using the hand-layup method. The samples were prepared in accordance with the specifications, and a vertical machine was used to carry out the drilling operation. For a total of 20 experiments per group with a pretest of G-power 80%. The sample’s MRR was assessed and compared. independent t-tests were performed on the MRR using the statistical software program. The average MRR for group 1 that is epoxy (90%)/fiber (5%)/nanocarbon particles (5%) was 0.37415 mm 3 /sec, compared to 0.11860 mm 3 /sec for group 2 (plain epoxy). Based on the outcomes of the independent t-test statistical analysis, it is determined that the mean variance of MRR between groups 1 and 2 is different (significant of p = 0.00, which is p less than 0.05). Hence identified a significant difference between the two groups considered. Within the constraints of this study, it is noticeable that the addition of reinforcements like sustainable areca fiber and nanocarbon particles has a significant effect on MRR improvement.","PeriodicalId":36802,"journal":{"name":"NanoWorld Journal","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoWorld Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17756/nwj.2023-s3-021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Primary goal of this work is to examine rate of material removal rate (MRR) during VMC (Vertical machining center) machining of inventive epoxy composites supported with sustainable natural fiber (areca) (5%) and nanocarbon particles made of tamarind seeds (5%) in comparison to plain epoxy. The samples for both groups were produced using the hand-layup method. The samples were prepared in accordance with the specifications, and a vertical machine was used to carry out the drilling operation. For a total of 20 experiments per group with a pretest of G-power 80%. The sample’s MRR was assessed and compared. independent t-tests were performed on the MRR using the statistical software program. The average MRR for group 1 that is epoxy (90%)/fiber (5%)/nanocarbon particles (5%) was 0.37415 mm 3 /sec, compared to 0.11860 mm 3 /sec for group 2 (plain epoxy). Based on the outcomes of the independent t-test statistical analysis, it is determined that the mean variance of MRR between groups 1 and 2 is different (significant of p = 0.00, which is p less than 0.05). Hence identified a significant difference between the two groups considered. Within the constraints of this study, it is noticeable that the addition of reinforcements like sustainable areca fiber and nanocarbon particles has a significant effect on MRR improvement.