Natal'ya Yur'yevna Demidenko, Mihail A. Bayandin, A. V. Namyatov, Vladimir Nikolayevich Yermolin
{"title":"RESEARCH OF PHYSICAL AND CHEMICAL PROPERTIES OF WOOD PULSE ACTIVATED BY HYDRODYNAMIC METHOD","authors":"Natal'ya Yur'yevna Demidenko, Mihail A. Bayandin, A. V. Namyatov, Vladimir Nikolayevich Yermolin","doi":"10.14258/jcprm.20230311513","DOIUrl":null,"url":null,"abstract":"The work studied the effect of mechanical activation, hydrodynamically, on the physico-chemical properties of soft waste from mechanical processing of wood (sawdust). As a result of research, it has been established that during cavitation treatment, the chemical structure of sawdust is transformed, which ensures the production of hydrodynamically activated wood particles with a high content of reactive surface functional groups, which is caused by a change in the ligno-carbohydrate complex. It has been established that as a result of hydrodynamic activation, the amount of difficult-to-hydrolyze polysaccharides is reduced by 37%, while the proportions of easily hydrolyzable substances and substances of phenolic nature increase, respectively, by 12 and 25%. The transformation of the ligno-carbohydrate complex of wood particles during cavitation largely determines the change in the characteristics of their porous structure. An increase in the number of micropores by 1.5 times and large transport pores by 3 times during the cavitation process was established. The results obtained largely prove that the physical and chemical properties of hydrodynamically activated wood particles largely determine the possibility of obtaining non-toxic wood materials with high physical and mechanical properties without piezo-thermal effects.","PeriodicalId":9946,"journal":{"name":"chemistry of plant raw material","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"chemistry of plant raw material","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14258/jcprm.20230311513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The work studied the effect of mechanical activation, hydrodynamically, on the physico-chemical properties of soft waste from mechanical processing of wood (sawdust). As a result of research, it has been established that during cavitation treatment, the chemical structure of sawdust is transformed, which ensures the production of hydrodynamically activated wood particles with a high content of reactive surface functional groups, which is caused by a change in the ligno-carbohydrate complex. It has been established that as a result of hydrodynamic activation, the amount of difficult-to-hydrolyze polysaccharides is reduced by 37%, while the proportions of easily hydrolyzable substances and substances of phenolic nature increase, respectively, by 12 and 25%. The transformation of the ligno-carbohydrate complex of wood particles during cavitation largely determines the change in the characteristics of their porous structure. An increase in the number of micropores by 1.5 times and large transport pores by 3 times during the cavitation process was established. The results obtained largely prove that the physical and chemical properties of hydrodynamically activated wood particles largely determine the possibility of obtaining non-toxic wood materials with high physical and mechanical properties without piezo-thermal effects.