Annual Performance Evaluation of a Novel Industrial-Scale Solar Dryer for Phosphogypsum Waste

H. El-Ghetany, Sh. El Rafie, M.H. El-Awady, Randa M. Osman, Ahmed M. Awad Abouelata
{"title":"Annual Performance Evaluation of a Novel Industrial-Scale Solar Dryer for Phosphogypsum Waste","authors":"H. El-Ghetany, Sh. El Rafie, M.H. El-Awady, Randa M. Osman, Ahmed M. Awad Abouelata","doi":"10.2174/0124055204264579231003111214","DOIUrl":null,"url":null,"abstract":"Solar drying is considered one of the most promising technologies for drying the phosphogypsum “Calcium Sulfate Dehydrate” material as a clean source of energy and saving the environment from its negative impact if it is dried in an open landfill. The dried phosphogypsum (PG) may be recycled and utilized in many useful applications. The presented design of the trapezoidal-shaped greenhouse solar dryer is the preferable solution to perform the drying process in the daytime with solar energy. It may be usable at night, during cloudy and rainy periods, using evacuated tube solar collectors via sensible heat solar thermal energy storage. The system can be operated for 24 hours by solar energy. From theoretical calculations, it was found that the drying time decreased as the gypsum layer in the drying trays decreased due to the improvement of the heat transfer mechanism. The designed solar dryer was studied at various loading capacities depending on the gypsum thickness on the dryer trays. Capacities were 8280 kg, 6624 kg, 4968 kg, 3312 kg, and 1656 kg, corresponding to gypsum thickness of 5 cm, 4 cm, 3 cm, 2 cm, and 1 cm, respectively. The daily collected amount of water and the daily moisture content were estimated with different gypsum thicknesses during all months of the year. It was found that the solar dryer with a capacity of 1,656 kg weight was technically and economically feasible. It was also found that the maximum reduction of moisture content occurred during the summer season, while the minimum values were achieved during winter. With a mass of gypsum equal to 1,656 kg weight, the moisture content of gypsum started to decrease from its initial value (35%) until it reached the final value (10%) in 4 scenarios: the first one, 2 days from April to September, 3 days from March to November, more than 3 days in other months while the minimum moisture content, i.e., 20%, was reported in the first day in June.","PeriodicalId":20833,"journal":{"name":"Recent Innovations in Chemical Engineering (Formerly Recent Patents on Chemical Engineering)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Innovations in Chemical Engineering (Formerly Recent Patents on Chemical Engineering)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0124055204264579231003111214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solar drying is considered one of the most promising technologies for drying the phosphogypsum “Calcium Sulfate Dehydrate” material as a clean source of energy and saving the environment from its negative impact if it is dried in an open landfill. The dried phosphogypsum (PG) may be recycled and utilized in many useful applications. The presented design of the trapezoidal-shaped greenhouse solar dryer is the preferable solution to perform the drying process in the daytime with solar energy. It may be usable at night, during cloudy and rainy periods, using evacuated tube solar collectors via sensible heat solar thermal energy storage. The system can be operated for 24 hours by solar energy. From theoretical calculations, it was found that the drying time decreased as the gypsum layer in the drying trays decreased due to the improvement of the heat transfer mechanism. The designed solar dryer was studied at various loading capacities depending on the gypsum thickness on the dryer trays. Capacities were 8280 kg, 6624 kg, 4968 kg, 3312 kg, and 1656 kg, corresponding to gypsum thickness of 5 cm, 4 cm, 3 cm, 2 cm, and 1 cm, respectively. The daily collected amount of water and the daily moisture content were estimated with different gypsum thicknesses during all months of the year. It was found that the solar dryer with a capacity of 1,656 kg weight was technically and economically feasible. It was also found that the maximum reduction of moisture content occurred during the summer season, while the minimum values were achieved during winter. With a mass of gypsum equal to 1,656 kg weight, the moisture content of gypsum started to decrease from its initial value (35%) until it reached the final value (10%) in 4 scenarios: the first one, 2 days from April to September, 3 days from March to November, more than 3 days in other months while the minimum moisture content, i.e., 20%, was reported in the first day in June.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型工业级磷石膏废料太阳能干燥器的年度性能评估
太阳能干燥被认为是干燥磷石膏 "脱水硫酸钙 "材料的最有前途的技术之一,它既是一种清洁能源,又可避免在露天垃圾填埋场干燥对环境造成的负面影响。 干燥后的磷石膏(PG)可回收利用,并可用于多种有用的用途。所介绍的梯形温室太阳能干燥器设计是白天利用太阳能进行干燥过程的最佳解决方案。通过显热太阳能热能存储,利用真空管太阳能集热器,该系统可在夜间、阴雨天使用。该系统可利用太阳能运行 24 小时。通过理论计算发现,由于传热机制的改善,干燥时间随着干燥盘中石膏层的减少而缩短。根据烘干盘上的石膏厚度,对所设计的太阳能烘干机进行了不同装载量的研究。容量分别为 8280 千克、6624 千克、4968 千克、3312 千克和 1656 千克,对应的石膏厚度分别为 5 厘米、4 厘米、3 厘米、2 厘米和 1 厘米。对全年各月不同石膏厚度下的日集水量和日含水量进行了估算。 结果表明,容量为 1 656 公斤的太阳能干燥机在技术和经济上都是可行的。研究还发现,含水量的最大降幅出现在夏季,而最小值出现在冬季。 在石膏质量为 1 656 千克的情况下,石膏的含水量从初始值(35%)开始下降,在 4 种情况下达到最终值(10%):第一种情况,4 月至 9 月为 2 天,3 月至 11 月为 3 天,其他月份为 3 天以上,而最低含水量(即 20%)出现在 6 月的第一天。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of Biomass Gasification in Achieving Circular Economy Regulation of the Properties of Polymers based on Thiirane using Mixtures of Amine Hardeners Predicting the Residual Strength of Oil and Gas Pipelines Using the GA-BP Neural Network Thermo-Acoustic Behaviour of K2CrO4 and K4 [Fe(CN)6] in Aqueous Dimethylformamide at Different Temperatures Predictive Modeling and Optimization of Plywood Drying: An Artificial Neural Network Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1