EVALUATION OF VISION TRANSFORMER ON WEATHER IMAGE RECOGNITION

Huy Cong Phi, Nam Quy Tran
{"title":"EVALUATION OF VISION TRANSFORMER ON WEATHER IMAGE RECOGNITION","authors":"Huy Cong Phi, Nam Quy Tran","doi":"10.35382/tvujs.13.3.2023.2431","DOIUrl":null,"url":null,"abstract":"This study implements Vision Transformer 16x16 Words model for weather images classification. Its performance is compared with other traditional convolutional neural network (CNN) architectures, namely EfficientNetB2, DenseNet201, EfficientNetB7 and MobileNetV2. These models are implemented by transfer learning techniques for classification of images. In order to ensure the comparative performance, the same hyper-parameters of their models, such as dropout rate, optimizer and learning rate are employed identically. Furthermore, the same dataset on weather image phenomena applied on all those models with the same training, validation and testing dataset of weather images classification. The dataset of 11 different image classes that are collected from different resources of weather images with various kinds of weather phenomena are employed. The test results of performance show that the Vision Transformer gives the best results at 86.20%, which is suitable for application in evaluating weather images classification problem.","PeriodicalId":159074,"journal":{"name":"TRA VINH UNIVERSITY JOURNAL OF SCIENCE; ISSN: 2815-6072; E-ISSN: 2815-6099","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRA VINH UNIVERSITY JOURNAL OF SCIENCE; ISSN: 2815-6072; E-ISSN: 2815-6099","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35382/tvujs.13.3.2023.2431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study implements Vision Transformer 16x16 Words model for weather images classification. Its performance is compared with other traditional convolutional neural network (CNN) architectures, namely EfficientNetB2, DenseNet201, EfficientNetB7 and MobileNetV2. These models are implemented by transfer learning techniques for classification of images. In order to ensure the comparative performance, the same hyper-parameters of their models, such as dropout rate, optimizer and learning rate are employed identically. Furthermore, the same dataset on weather image phenomena applied on all those models with the same training, validation and testing dataset of weather images classification. The dataset of 11 different image classes that are collected from different resources of weather images with various kinds of weather phenomena are employed. The test results of performance show that the Vision Transformer gives the best results at 86.20%, which is suitable for application in evaluating weather images classification problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视觉转换器对气象图像识别的评估
本研究将 Vision Transformer 16x16 Words 模型用于天气图像分类。它的性能与其他传统卷积神经网络(CNN)架构,即 EfficientNetB2、DenseNet201、EfficientNetB7 和 MobileNetV2 进行了比较。这些模型都是通过迁移学习技术实现图像分类的。为了确保性能的可比性,它们的模型采用了相同的超参数,如辍学率、优化器和学习率。此外,所有模型都使用了相同的天气图像现象数据集,并使用了相同的天气图像分类训练、验证和测试数据集。这些数据集包含 11 种不同的图像类别,它们是从不同的气象图像资源中收集的,并带有各种气象现象。性能测试结果表明,Vision Transformer 的结果最好,达到了 86.20%,适合用于评估天气图像分类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
STUDENTS’ PERCEPTIONS OF THE EFFECTIVENESS OF THE FLIPPED CLASSROOM MODEL APPLIED TO ADVANCED ENGLISH READING: A CASE STUDY OF ENGLISH MAJORS AT THAI BINH DUONG UNVERSITY, VIETNAM AN EVALUATION OF ROBO-ADVISOR RISK ASSESSMENT QUESTIONNAIRES IN SELECTED ASIA PACIFIC ECONOMIES DESIGN AND EXPERIMENT TO DETERMINE OPERATING PARAMETERS FOR SUGARCANE PEELER ACCORDING TO THE PRINCIPLE OF CIRCULAR BRUSH POTENTIAL APPLICATIONS OF BIOACTIVE COMPONENTS FROM BROWN ALGAE ANALYZING GIT LOG IN AN CODE-QUALITY AWARE AUTOMATED PROGRAMMING ASSESSMENT SYSTEM: A CASE STUDY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1