M. Voitovyk, I. Prymak, Viktoriia Melnyk, О. Panchenko, O. Tsyuk
{"title":"Humus state and nutrient regime of typical chernozem depending on fertilisation in short crop rotations","authors":"M. Voitovyk, I. Prymak, Viktoriia Melnyk, О. Panchenko, O. Tsyuk","doi":"10.31548/plant4.2023.33","DOIUrl":null,"url":null,"abstract":"The fertiliser system is the most effective factor in the intensification of crop cultivation technologies. The basis for scientifically sound fertiliser application systems, along with obtaining the planned level of yield of the appropriate quality, is the study of the organic matter content and soil nutrient regime during crop rotation. The purpose of this study was to determine the mineral nitrogen, mobile phosphorus, exchangeable potassium, and humus content in typical chernozem under different fertilisation systems in short-term crop rotations. To solve the problem of soil fertility, an important approach is to conduct field and laboratory research to determine changes in the humus state according to Tyurin, nitrogen, phosphorus, and potassium regimes of the soil according to Machigin, and dispersion methods to determine the reliability of experimental data. As a result of the research, it was found that the highest humus content in the soil was recorded under the organic-mineral fertilisation system at the end of the second rotation in the grain crop rotation by 0.13% compared to the fruit crop rotation. The use of a mineral fertiliser system in a row crop rotation reduced the humus content by 0.12%. An increase in the humus content of typical chernozem was recorded under fruit crop rotation and grain-row crop rotation. The organic-mineral fertilisation system tended to increase the mineral nitrogen content of the soil compared to the other systems. The mineral nitrogen content of the mineral fertilisation system decreased by 5.5 mg/kg of soil compared to the unfertilised variant. Under the organic-mineral and mineral fertilisation system, the content of mobile phosphate increased in all crop rotations. The content of mobile phosphorus in the tilled crop rotation was substantially reduced compared to the fruit crop rotation and grain-row crop rotation. The highest content of exchangeable potassium in the soil was recorded under the mineral fertilisation system. The materials of the publications are of practical importance in the analysis of the main elements of mineral nutrition of typical chernozem in short crop rotations","PeriodicalId":20195,"journal":{"name":"PLANT AND SOIL SCIENCE","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLANT AND SOIL SCIENCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31548/plant4.2023.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The fertiliser system is the most effective factor in the intensification of crop cultivation technologies. The basis for scientifically sound fertiliser application systems, along with obtaining the planned level of yield of the appropriate quality, is the study of the organic matter content and soil nutrient regime during crop rotation. The purpose of this study was to determine the mineral nitrogen, mobile phosphorus, exchangeable potassium, and humus content in typical chernozem under different fertilisation systems in short-term crop rotations. To solve the problem of soil fertility, an important approach is to conduct field and laboratory research to determine changes in the humus state according to Tyurin, nitrogen, phosphorus, and potassium regimes of the soil according to Machigin, and dispersion methods to determine the reliability of experimental data. As a result of the research, it was found that the highest humus content in the soil was recorded under the organic-mineral fertilisation system at the end of the second rotation in the grain crop rotation by 0.13% compared to the fruit crop rotation. The use of a mineral fertiliser system in a row crop rotation reduced the humus content by 0.12%. An increase in the humus content of typical chernozem was recorded under fruit crop rotation and grain-row crop rotation. The organic-mineral fertilisation system tended to increase the mineral nitrogen content of the soil compared to the other systems. The mineral nitrogen content of the mineral fertilisation system decreased by 5.5 mg/kg of soil compared to the unfertilised variant. Under the organic-mineral and mineral fertilisation system, the content of mobile phosphate increased in all crop rotations. The content of mobile phosphorus in the tilled crop rotation was substantially reduced compared to the fruit crop rotation and grain-row crop rotation. The highest content of exchangeable potassium in the soil was recorded under the mineral fertilisation system. The materials of the publications are of practical importance in the analysis of the main elements of mineral nutrition of typical chernozem in short crop rotations