K-Means Clustering and Multilayer Perceptron for Categorizing Student Business Groups

Miftahul Walid, Norfiah Lailatin Nispi Sahbaniya, Hozairi Hozairi, Fajar Baskoro, Arya Yudhi Wijaya
{"title":"K-Means Clustering and Multilayer Perceptron for Categorizing Student Business Groups","authors":"Miftahul Walid, Norfiah Lailatin Nispi Sahbaniya, Hozairi Hozairi, Fajar Baskoro, Arya Yudhi Wijaya","doi":"10.17977/um018v6i12023p69-78","DOIUrl":null,"url":null,"abstract":"The research conducted in this study was driven by the East Java provincial government's requirement to assess the transaction levels of the Student Business Group (KUS) in the SMA Double Track program. These transaction levels are a basis for allocating supplementary financial aid to each business group. The system's primary objective is to assist the provincial government of East Java in making well-informed choices pertaining to the distribution of supplementary capital to the KUS. The classification technique employed in this study is the multilayer perceptron. However, the K-Means Clustering method is utilised to generate target data due to the limited availability during the classification process, which involves dividing the transaction level attributes into three distinct groups: (0) low transactions, (1) medium transactions, and (2) high transactions. The clustering process encompasses three distinct features: (1) income, (2) spending, and (3) profit. These three traits will be utilized as input data throughout the categorization procedure. The classification procedure employing the Multilayer Perceptron technique involved processing a dataset including 1383 data points. The training data constituted 80% of the dataset, while the remaining 20% was allocated for testing. In order to evaluate the efficacy of the constructed model, the training error was assessed using K-Fold cross-validation, yielding an average accuracy score of 0.92. In the present study, the categorization technique yielded an accuracy of 0.96. This model aims to classify scenarios when the dataset lacks prior target data.","PeriodicalId":52868,"journal":{"name":"Knowledge Engineering and Data Science","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge Engineering and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17977/um018v6i12023p69-78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The research conducted in this study was driven by the East Java provincial government's requirement to assess the transaction levels of the Student Business Group (KUS) in the SMA Double Track program. These transaction levels are a basis for allocating supplementary financial aid to each business group. The system's primary objective is to assist the provincial government of East Java in making well-informed choices pertaining to the distribution of supplementary capital to the KUS. The classification technique employed in this study is the multilayer perceptron. However, the K-Means Clustering method is utilised to generate target data due to the limited availability during the classification process, which involves dividing the transaction level attributes into three distinct groups: (0) low transactions, (1) medium transactions, and (2) high transactions. The clustering process encompasses three distinct features: (1) income, (2) spending, and (3) profit. These three traits will be utilized as input data throughout the categorization procedure. The classification procedure employing the Multilayer Perceptron technique involved processing a dataset including 1383 data points. The training data constituted 80% of the dataset, while the remaining 20% was allocated for testing. In order to evaluate the efficacy of the constructed model, the training error was assessed using K-Fold cross-validation, yielding an average accuracy score of 0.92. In the present study, the categorization technique yielded an accuracy of 0.96. This model aims to classify scenarios when the dataset lacks prior target data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 K-Means 聚类和多层感知器对学生商业团体进行分类
东爪哇省政府要求评估 SMA 双轨项目中学生企业集团(KUS)的交易水平,本研究正是在此要求下开展的。这些交易水平是向每个企业集团分配补充财政援助的依据。该系统的主要目的是协助东爪哇省政府在向 KUS 分配补充资金时做出明智的选择。本研究采用的分类技术是多层感知器。然而,在分类过程中,由于可用性有限,因此使用 K-Means 聚类法生成目标数据,该方法涉及将交易级属性分为三个不同的组别:(0)低交易、(1)中交易和(2)高交易。聚类过程包括三个不同的特征:(1) 收入、(2) 支出和 (3) 利润。这三个特征将在整个分类过程中用作输入数据。采用多层感知器技术的分类程序需要处理包括 1383 个数据点的数据集。训练数据占数据集的 80%,其余 20% 用于测试。为了评估所建模型的有效性,使用 K-Fold 交叉验证法对训练误差进行了评估,得出的平均准确率为 0.92。在本研究中,分类技术的准确率为 0.96。该模型旨在对缺乏先验目标数据的数据集进行场景分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
4
审稿时长
8 weeks
期刊最新文献
Optimizing Random Forest Algorithm to Classify Player's Memorisation via In-game Data Long-Term Traffic Prediction Based on Stacked GCN Model Round-Robin Algorithm in Load Balancing for National Data Centers K-Means Clustering and Multilayer Perceptron for Categorizing Student Business Groups Maximum Marginal Relevance and Vector Space Model for Summarizing Students' Final Project Abstracts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1