Penerapan Data Mining Dalam Mengelompokkan Kunjungan Wisatawan Mancanegara Di Prov. Sulawesi Selatan Dengan K-Means Dan SVM

Nero Caesar Gosari, Rismayani Rismayani
{"title":"Penerapan Data Mining Dalam Mengelompokkan Kunjungan Wisatawan Mancanegara Di Prov. Sulawesi Selatan Dengan K-Means Dan SVM","authors":"Nero Caesar Gosari, Rismayani Rismayani","doi":"10.30591/jpit.v8i3.4554","DOIUrl":null,"url":null,"abstract":"Indonesia's exchange rate can rise due to foreign tourist visits, which can also benefit the local economy. The provincial capital. South Sulawesi is Makassar which is one of the locations for tourist visits. There are 11 main tourist attractions in Prov. South Sulawesi according to sulselprov 1) Maritime Tourism, 2) Losari Beach, 3) Rotterdam Fort, 4) Somba opu Fort, 5) Takabonerate Marine Park, 6) Bantimurung National Park, 7) Malino, 8) Tanjung Bira Beach, 9) Kesu Tourism, 10) Londa Tourism, 11) Pallawa Tourism. The purpose of this study is to analyze the application of data mining in classifying the number of foreign tourists visiting the prefecture. South Sulawesi uses k-means. The data used comes from BPS Prov. South Sulawesi. The data is grouped into two clusters. That is, the most tourists as C1 with results from Malaysia, and low tourist arrivals as C0 with results from Singapore, Japan, South Korea, Taiwan, China, India, the Philippines, Hong Kong, Thailand, Australia, USA, UK, Netherlands, Germany, France, Russia, Saudi Arabia, Egypt, United Arab Emirates, Pearl of the Persian Gulf, and Switzerland then I use and process this data again with SVM to look for precision, precision and recall values and get 100.00% accuracy in the RapidMiner application.","PeriodicalId":503683,"journal":{"name":"Jurnal Informatika: Jurnal Pengembangan IT","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika: Jurnal Pengembangan IT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30591/jpit.v8i3.4554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Indonesia's exchange rate can rise due to foreign tourist visits, which can also benefit the local economy. The provincial capital. South Sulawesi is Makassar which is one of the locations for tourist visits. There are 11 main tourist attractions in Prov. South Sulawesi according to sulselprov 1) Maritime Tourism, 2) Losari Beach, 3) Rotterdam Fort, 4) Somba opu Fort, 5) Takabonerate Marine Park, 6) Bantimurung National Park, 7) Malino, 8) Tanjung Bira Beach, 9) Kesu Tourism, 10) Londa Tourism, 11) Pallawa Tourism. The purpose of this study is to analyze the application of data mining in classifying the number of foreign tourists visiting the prefecture. South Sulawesi uses k-means. The data used comes from BPS Prov. South Sulawesi. The data is grouped into two clusters. That is, the most tourists as C1 with results from Malaysia, and low tourist arrivals as C0 with results from Singapore, Japan, South Korea, Taiwan, China, India, the Philippines, Hong Kong, Thailand, Australia, USA, UK, Netherlands, Germany, France, Russia, Saudi Arabia, Egypt, United Arab Emirates, Pearl of the Persian Gulf, and Switzerland then I use and process this data again with SVM to look for precision, precision and recall values and get 100.00% accuracy in the RapidMiner application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据挖掘在南苏拉威西省外国游客访问聚类中的应用使用 K-Means 和 SVM 对南苏拉威西省的外国游客进行聚类
外国游客的到访会使印尼的汇率上升,这也会使当地经济受益。省会。南苏拉威西省的省会是望加锡(Makassar),它是游客到访的地点之一。根据 sulselprov 的统计,南苏拉威西省有 11 个主要旅游景点 1)1)海上旅游;2)Losari 海滩;3)鹿特丹要塞;4)Somba opu 要塞;5)Takabonerate 海洋公园;6)Bantimurung 国家公园;7)Malino;8)Tanjung Bira 海滩;9)Kesu 旅游;10)Londa 旅游;11)Pallawa 旅游。本研究的目的是分析数据挖掘在对访问该县的外国游客数量进行分类方面的应用。南苏拉威西省使用的是 K-均值法。所使用的数据来自南苏拉威西省的 BPS 省。数据被分为两个群组。即游客人数最多的为 C1,结果来自马来西亚;游客人数最少的为 C0,结果来自新加坡、日本、韩国、中国台湾、印度、菲律宾、中国香港、泰国、澳大利亚、美国、英国、荷兰、德国、法国、俄罗斯、沙特阿拉伯、埃及、阿拉伯联合酋长国、波斯湾明珠和瑞士。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Teknologi Deteksi Dini Banjir Daerah Aliran Sungai menggunakan Heltec Wifi LoRa 32 V2 Sistem Diagnosa Penyakit Liver Menggunakan Metode Artificial Neural Network: Studi Berdasarkan Dataset Indian Liver Patient Dataset Rancang Bangun Aplikasi Diet untuk Ibu Menyusui Pasca Persalinan dengan Algoritma Mifflin-St Jeor Penyesuaian Model Ketahanan Siber Umkm Di Indonesia Dengan Nist Cybersecurity Framework Pemanfaatan Narrowband IoT (NB-IoT) dalam Peningkatan Produktivitas Peternakan melalui Monitoring Otomatis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1