首页 > 最新文献

Jurnal Informatika: Jurnal Pengembangan IT最新文献

英文 中文
Teknologi Deteksi Dini Banjir Daerah Aliran Sungai menggunakan Heltec Wifi LoRa 32 V2 使用 Heltec Wifi LoRa 32 V2 的流域洪水早期探测技术
Pub Date : 2024-01-18 DOI: 10.30591/jpit.v9i1.5892
Feby Amanda, S. Samsugi, Styawati Styawati, Syahirul Alim
In Indonesia there are often natural disasters, one of which is flooding. Flooding is a natural disaster that is marked by the overflowing of river water irrigation channels in urban areas, one is the river Irrigation that exists at the Technokrat University of Indonesia. Therefore, the study aims to develop a flood early detection tool using LoRa (Long Range) technology to monitor potential flooding in Kalibalau, Indonesian Technocratic University, Bandar Lampung. The research method involves installing an ultrasonic sensor in the Kalibalau River and connecting it to the Heltec Wifi LoRa 32 V2 microcontroller. Test results show that the LoRa transmitter and receiver operate as planned. This tool does not require an internet connection because it uses the Heltec Wifi LoRa 32 V2. The status of the river is categorized into four: Safe, Alert 1, Alert 2, and Danger, with appropriate warnings. The test showed a delay of 5 seconds on the water height reading. At safe (water height 44 cm), the buzzer does not sound. At morning 1 (water altitude 82 cm), it sounds once with a 1 minute delay. The device has a communication capacity of up to 400 meters. Thus, the tool is effective in monitoring the Kalibalau river and giving early warning of potential floods. This research has contributed to the development of flood monitoring technology to increase public alertness and safety in flood-prone areas
印度尼西亚经常发生自然灾害,洪水就是其中之一。洪水是一种以城市地区河水灌溉渠道泛滥为特征的自然灾害,印尼科技大学的灌溉河就是其中之一。因此,本研究旨在利用 LoRa(长距离)技术开发一种洪水早期探测工具,以监测万达楠榜印尼科技大学卡利巴劳可能发生的洪水。研究方法包括在卡利巴劳河安装超声波传感器,并将其连接到 Heltec Wifi LoRa 32 V2 微控制器。测试结果表明,LoRa 发射器和接收器按计划运行。由于该工具使用的是 Heltec Wifi LoRa 32 V2,因此不需要互联网连接。河流的状态分为四种:安全、警报 1、警报 2 和危险,并发出相应的警告。测试显示,水位高度读数延迟 5 秒。在安全状态下(水位高度 44 厘米),蜂鸣器不鸣响。在早晨 1 点(水位高度 82 厘米),蜂鸣器鸣叫一次,延时 1 分钟。该设备的通信能力可达 400 米。因此,该工具可有效监测卡利巴劳河,并对可能发生的洪水发出预警。这项研究有助于开发洪水监测技术,提高洪水易发地区的公众警惕性和安全性。
{"title":"Teknologi Deteksi Dini Banjir Daerah Aliran Sungai menggunakan Heltec Wifi LoRa 32 V2","authors":"Feby Amanda, S. Samsugi, Styawati Styawati, Syahirul Alim","doi":"10.30591/jpit.v9i1.5892","DOIUrl":"https://doi.org/10.30591/jpit.v9i1.5892","url":null,"abstract":"In Indonesia there are often natural disasters, one of which is flooding. Flooding is a natural disaster that is marked by the overflowing of river water irrigation channels in urban areas, one is the river Irrigation that exists at the Technokrat University of Indonesia. Therefore, the study aims to develop a flood early detection tool using LoRa (Long Range) technology to monitor potential flooding in Kalibalau, Indonesian Technocratic University, Bandar Lampung. The research method involves installing an ultrasonic sensor in the Kalibalau River and connecting it to the Heltec Wifi LoRa 32 V2 microcontroller. Test results show that the LoRa transmitter and receiver operate as planned. This tool does not require an internet connection because it uses the Heltec Wifi LoRa 32 V2. The status of the river is categorized into four: Safe, Alert 1, Alert 2, and Danger, with appropriate warnings. The test showed a delay of 5 seconds on the water height reading. At safe (water height 44 cm), the buzzer does not sound. At morning 1 (water altitude 82 cm), it sounds once with a 1 minute delay. The device has a communication capacity of up to 400 meters. Thus, the tool is effective in monitoring the Kalibalau river and giving early warning of potential floods. This research has contributed to the development of flood monitoring technology to increase public alertness and safety in flood-prone areas","PeriodicalId":503683,"journal":{"name":"Jurnal Informatika: Jurnal Pengembangan IT","volume":"21 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140504025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sistem Diagnosa Penyakit Liver Menggunakan Metode Artificial Neural Network: Studi Berdasarkan Dataset Indian Liver Patient Dataset 使用人工神经网络方法的肝病诊断系统:基于印度肝病患者数据集的研究
Pub Date : 2023-12-14 DOI: 10.30591/jpit.v8i3.5346
Ashri Shabrina Afrah
Penyakit Hati atau liver merupakan penyakit yang menyerang organ hati pada manusia dimana organ hati berfungsi dalam pengelolaan kolesterol atau lemak pada tubuh. Dampak yang diberikan oleh penyakit liver ini berbeda-beda tergantung pada tingkat keparahan dan respons pengobatan yang dilakukan oleh individu. Oleh karena itu, pengembangan sistem prediksi penyakit liver menjadi relevan dan bermanfaat dalam membantu dokter dan tenaga medis untuk mengambil tindakan yang tepat secara lebih cepat. Untuk dapat mengembangkan sistem ini maka dapat dilakukan dengan menggunakan metode Artificial Neural Network (ANN). Tujuan dilakukan klasifikasi ini adalah untuk membantu mengetahui keakuratan model ANN dalam mengklasifikasi dataset penyakit liver. Menggunakan metode tersebut dataset dibagi menjadi 3 tahapan yaitu preprocessing data, pemrosesan data, dan evaluasi data. Preprocessing data dilakukan perbaikan terhadap dataset dan melakukan split data sehingga dihasilkan dataset baru. Pada pemrosesan data dilakukan penentuan hidden layer, model aktivasi, dan normalisasi pada model. Pada tahap terakhir yaitu evaluasi dataset, terdapat nilai akurasi, confusion matrix, dan classification report. Pada model ini didapatkan sebuah prediksi true negatif 70, true positif 14, false negatif 16, dan false positif 17. Dengan menggunakan model ini didapatkan hasil akurasi 71,79% yang menandakan bahwa model baik dalam melakukan klasifikasi pada dataset.
肝病是一种影响人体肝脏器官的疾病,肝脏器官的功能是管理体内的胆固醇或脂肪。肝病的影响因个人病情的严重程度和治疗反应而异。因此,开发肝病预测系统对于帮助医生和医务人员更快地采取适当行动具有现实意义和实用性。要开发这一系统,可以使用人工神经网络(ANN)方法。这种分类方法的目的是帮助确定人工神经网络模型对肝病数据集进行分类的准确性。使用这种方法,数据集被分为三个阶段,即数据预处理、数据处理和数据评估。数据预处理的目的是改进数据集并分割数据,从而生成新的数据集。在数据处理中,要确定模型的隐藏层、激活模型和归一化。在最后一个阶段,即数据集评估阶段,会有准确度值、混淆矩阵和分类报告。通过使用该模型,准确率结果为 71.79%,这表明该模型在数据集分类方面表现良好。
{"title":"Sistem Diagnosa Penyakit Liver Menggunakan Metode Artificial Neural Network: Studi Berdasarkan Dataset Indian Liver Patient Dataset","authors":"Ashri Shabrina Afrah","doi":"10.30591/jpit.v8i3.5346","DOIUrl":"https://doi.org/10.30591/jpit.v8i3.5346","url":null,"abstract":"Penyakit Hati atau liver merupakan penyakit yang menyerang organ hati pada manusia dimana organ hati berfungsi dalam pengelolaan kolesterol atau lemak pada tubuh. Dampak yang diberikan oleh penyakit liver ini berbeda-beda tergantung pada tingkat keparahan dan respons pengobatan yang dilakukan oleh individu. Oleh karena itu, pengembangan sistem prediksi penyakit liver menjadi relevan dan bermanfaat dalam membantu dokter dan tenaga medis untuk mengambil tindakan yang tepat secara lebih cepat. Untuk dapat mengembangkan sistem ini maka dapat dilakukan dengan menggunakan metode Artificial Neural Network (ANN). Tujuan dilakukan klasifikasi ini adalah untuk membantu mengetahui keakuratan model ANN dalam mengklasifikasi dataset penyakit liver. Menggunakan metode tersebut dataset dibagi menjadi 3 tahapan yaitu preprocessing data, pemrosesan data, dan evaluasi data. Preprocessing data dilakukan perbaikan terhadap dataset dan melakukan split data sehingga dihasilkan dataset baru. Pada pemrosesan data dilakukan penentuan hidden layer, model aktivasi, dan normalisasi pada model. Pada tahap terakhir yaitu evaluasi dataset, terdapat nilai akurasi, confusion matrix, dan classification report. Pada model ini didapatkan sebuah prediksi true negatif 70, true positif 14, false negatif 16, dan false positif 17. Dengan menggunakan model ini didapatkan hasil akurasi 71,79% yang menandakan bahwa model baik dalam melakukan klasifikasi pada dataset.","PeriodicalId":503683,"journal":{"name":"Jurnal Informatika: Jurnal Pengembangan IT","volume":"59 30","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139180362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Penyesuaian Model Ketahanan Siber Umkm Di Indonesia Dengan Nist Cybersecurity Framework 根据 Nist 网络安全框架调整印度尼西亚 Umkm 网络复原力模型
Pub Date : 2023-11-10 DOI: 10.30591/jpit.v8i3.5662
Sabri Balafif
Artikel ini menyelaraskan dengan penyesuaian kerangka kerja model ketahanan siber dari NIST Cybersecurity Framework (NIST-CSF) dengan penambahan aspek kesadaran dan kewaspadaan yang terhubung melalui aspek resistensi untuk mencapai ketahanan siber bagi UMKM yang saat ini rentan terhadap berbagai serangan siber. Khususnya, dalam proses tranformasi digital bisnis proses usahanya. Metodologi penelitian ini bersifat analisis deskriptif berbasis kualitatif, guna mengeksplorasi hasil secara intuitif dengan struktur sistematik dalam merekonstruksi pandangan inovatif guna menjawab tantangan pengembangannya. Hasil dalam pembahasan kajian ini adalah rekonstruksi model keamanan siber yang merupakan sebuah tema besar dengan prinsip-prinsip strategis dalam upaya harmonisasi resistensi serangan dengan ketahan Siber. Hal ini dapat membantu organisasi seperti UMKM untuk mengidentifikasi, menilai, dan mengurangi ancaman dalam dunia siber secara komprehensif dan berkelanjutan.
本文与美国国家标准与技术研究院(NIST)网络安全框架(NIST-CSF)中的网络复原力模型框架的调整相一致,增加了意识和警惕方面的内容,并通过抵御方面的内容来实现目前易受各种网络攻击的中小微企业的网络复原力。特别是在其业务流程的数字化转型过程中。本研究方法是基于定性的描述性分析,以系统的结构直观地探索结果,重构创新观点,以应对其发展所面临的挑战。本研究的讨论结果是重构一个网络安全模型,这是一个具有战略原则的大主题,旨在协调抗攻击性与网络复原力。这有助于中小微企业等组织以全面和可持续的方式识别、评估和减轻网络威胁。
{"title":"Penyesuaian Model Ketahanan Siber Umkm Di Indonesia Dengan Nist Cybersecurity Framework","authors":"Sabri Balafif","doi":"10.30591/jpit.v8i3.5662","DOIUrl":"https://doi.org/10.30591/jpit.v8i3.5662","url":null,"abstract":"Artikel ini menyelaraskan dengan penyesuaian kerangka kerja model ketahanan siber dari NIST Cybersecurity Framework (NIST-CSF) dengan penambahan aspek kesadaran dan kewaspadaan yang terhubung melalui aspek resistensi untuk mencapai ketahanan siber bagi UMKM yang saat ini rentan terhadap berbagai serangan siber. Khususnya, dalam proses tranformasi digital bisnis proses usahanya. Metodologi penelitian ini bersifat analisis deskriptif berbasis kualitatif, guna mengeksplorasi hasil secara intuitif dengan struktur sistematik dalam merekonstruksi pandangan inovatif guna menjawab tantangan pengembangannya. Hasil dalam pembahasan kajian ini adalah rekonstruksi model keamanan siber yang merupakan sebuah tema besar dengan prinsip-prinsip strategis dalam upaya harmonisasi resistensi serangan dengan ketahan Siber. Hal ini dapat membantu organisasi seperti UMKM untuk mengidentifikasi, menilai, dan mengurangi ancaman dalam dunia siber secara komprehensif dan berkelanjutan.","PeriodicalId":503683,"journal":{"name":"Jurnal Informatika: Jurnal Pengembangan IT","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139281501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rancang Bangun Aplikasi Diet untuk Ibu Menyusui Pasca Persalinan dengan Algoritma Mifflin-St Jeor 利用 Mifflin-St Jeor 算法为产后哺乳母亲设计饮食应用程序
Pub Date : 2023-11-10 DOI: 10.30591/jpit.v8i3.5733
Tinara Nathania Wiryonoputro, Theresia Ratih Dewi Saputri
Pregnancy is a significant and transformative period for women, both physically and emotionally. During this time, it is crucial for expectant mothers to prioritize their own health and well-being to create a healthy environment for their growing baby. One of the physical changes that many breastfeeding mothers experience after childbirth is weight gain. Factors contributing to this include increased caloric needs, lack of sleep, reduced physical activity, and feelings of stress and fatigue due to caring for a newborn. Maintaining a healthy weight is vital to reduce the risk of various health issues and ensure the quality of breast milk for the baby. However, it is important to note that mothers should not engage in strict dieting during the postpartum period, or the puerperium, which lasts up to 40 days after delivery. During this time, mothers should gradually resume normal activities and movement. To support breastfeeding mothers in maintaining their health after childbirth, a structured and monitored approach that provides tailored information according to each stage of development is necessary. The Laav application, available for iOS, is designed to calculate and record the caloric intake of breastfeeding mothers, helping them achieve proper nutrition while maintaining an ideal weight. The application is built using the User-Centered Design (UCD) methodology and uses the Mifflin-St Jeor algorithm to calculate calories. The application is programmed in SwiftUI, a language optimized for the iOS platform
怀孕对于女性来说是一个重要的转变时期,无论是身体上还是情感上。在此期间,准妈妈们必须优先考虑自身的健康和幸福,为宝宝的成长创造一个健康的环境。许多母乳喂养的母亲在分娩后经历的身体变化之一就是体重增加。导致体重增加的因素包括热量需求增加、睡眠不足、体力活动减少以及因照顾新生儿而感到压力和疲劳。保持健康的体重对降低各种健康问题的风险和确保婴儿母乳的质量至关重要。但需要注意的是,在产后 40 天内的产褥期,妈妈们不应该进行严格的节食。在此期间,母亲应逐渐恢复正常的活动和行动。为了支持母乳喂养的母亲在产后保持健康,有必要采取一种有组织、有监控的方法,根据每个发展阶段提供有针对性的信息。Laav 应用程序适用于 iOS 系统,旨在计算和记录母乳喂养母亲的卡路里摄入量,帮助她们在保持理想体重的同时获得适当的营养。该应用程序采用 "以用户为中心的设计"(UCD)方法构建,并使用 Mifflin-St Jeor 算法计算卡路里。该应用程序使用 SwiftUI 编程,这是一种针对 iOS 平台进行了优化的语言。
{"title":"Rancang Bangun Aplikasi Diet untuk Ibu Menyusui Pasca Persalinan dengan Algoritma Mifflin-St Jeor","authors":"Tinara Nathania Wiryonoputro, Theresia Ratih Dewi Saputri","doi":"10.30591/jpit.v8i3.5733","DOIUrl":"https://doi.org/10.30591/jpit.v8i3.5733","url":null,"abstract":"Pregnancy is a significant and transformative period for women, both physically and emotionally. During this time, it is crucial for expectant mothers to prioritize their own health and well-being to create a healthy environment for their growing baby. One of the physical changes that many breastfeeding mothers experience after childbirth is weight gain. Factors contributing to this include increased caloric needs, lack of sleep, reduced physical activity, and feelings of stress and fatigue due to caring for a newborn. Maintaining a healthy weight is vital to reduce the risk of various health issues and ensure the quality of breast milk for the baby. However, it is important to note that mothers should not engage in strict dieting during the postpartum period, or the puerperium, which lasts up to 40 days after delivery. During this time, mothers should gradually resume normal activities and movement. To support breastfeeding mothers in maintaining their health after childbirth, a structured and monitored approach that provides tailored information according to each stage of development is necessary. The Laav application, available for iOS, is designed to calculate and record the caloric intake of breastfeeding mothers, helping them achieve proper nutrition while maintaining an ideal weight. The application is built using the User-Centered Design (UCD) methodology and uses the Mifflin-St Jeor algorithm to calculate calories. The application is programmed in SwiftUI, a language optimized for the iOS platform","PeriodicalId":503683,"journal":{"name":"Jurnal Informatika: Jurnal Pengembangan IT","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139281435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pemanfaatan Narrowband IoT (NB-IoT) dalam Peningkatan Produktivitas Peternakan melalui Monitoring Otomatis 利用窄带物联网 (NB-IoT) 通过自动监测提高牲畜生产率
Pub Date : 2023-09-26 DOI: 10.30591/jpit.v8i3.5824
Arif Rakhman, Achmad Sutanto, Rudi Hernowo
The rapid advancements in Narrowband IoT (NB-IoT) technology present significant opportunities for creating innovative products that can be implemented in daily life. One of these innovative products is the utilization of NB-IoT for monitoring cage conditions, maintenance, and boosting livestock productivity under challenging conditions that are difficult to manually control. This study aims to design an automated system capable of maintaining ideal cage conditions, including temperature, humidity, levels of ammonia (NH3 and CO2), as well as providing feed/water to livestock automatically and periodically. The research methodology involves the integration of various sensors mounted on a microcontroller, such as temperature sensors, humidity sensors, ammonia sensors, water level sensors, and pH sensors. The program executed by this microcontroller is connected to a control panel, and through the internet network, control and monitoring can be carried out using mobile and desktop devices. The test results indicate that this system is capable of providing ease in controlling the chicken coop for owners and workers, maintaining poultry health, and increasing livestock product yields from 97.17% of harvested poultry to 98.263%, with a decrease in the mortality rate from 2.830% to 1.737%. Overall, the utilization of NB-IoT technology in this research provides a positive impact on livestock management, offering an automated solution that enhances efficiency and productivity in the agricultural sector.
窄带物联网(NB-IoT)技术的快速发展为创造可应用于日常生活的创新产品提供了重要机遇。这些创新产品之一就是利用 NB-IoT 监控笼舍条件、维护以及在难以人工控制的挑战性条件下提高牲畜生产率。本研究旨在设计一种自动化系统,能够维持理想的笼舍条件,包括温度、湿度、氨气(NH3 和 CO2)水平,并自动定期为牲畜提供饲料/水。研究方法包括在微控制器上集成各种传感器,如温度传感器、湿度传感器、氨气传感器、水位传感器和 pH 传感器。该微控制器执行的程序与控制面板相连,通过互联网络,可使用移动和台式设备进行控制和监测。测试结果表明,该系统能够为业主和工人提供控制鸡舍的便利,维护家禽健康,并将畜产品产量从收获家禽的 97.17% 提高到 98.263%,死亡率从 2.830% 降低到 1.737%。总之,在这项研究中利用 NB-IoT 技术对家畜管理产生了积极影响,提供了一种自动化解决方案,提高了农业部门的效率和生产力。
{"title":"Pemanfaatan Narrowband IoT (NB-IoT) dalam Peningkatan Produktivitas Peternakan melalui Monitoring Otomatis","authors":"Arif Rakhman, Achmad Sutanto, Rudi Hernowo","doi":"10.30591/jpit.v8i3.5824","DOIUrl":"https://doi.org/10.30591/jpit.v8i3.5824","url":null,"abstract":"The rapid advancements in Narrowband IoT (NB-IoT) technology present significant opportunities for creating innovative products that can be implemented in daily life. One of these innovative products is the utilization of NB-IoT for monitoring cage conditions, maintenance, and boosting livestock productivity under challenging conditions that are difficult to manually control. This study aims to design an automated system capable of maintaining ideal cage conditions, including temperature, humidity, levels of ammonia (NH3 and CO2), as well as providing feed/water to livestock automatically and periodically. The research methodology involves the integration of various sensors mounted on a microcontroller, such as temperature sensors, humidity sensors, ammonia sensors, water level sensors, and pH sensors. The program executed by this microcontroller is connected to a control panel, and through the internet network, control and monitoring can be carried out using mobile and desktop devices. The test results indicate that this system is capable of providing ease in controlling the chicken coop for owners and workers, maintaining poultry health, and increasing livestock product yields from 97.17% of harvested poultry to 98.263%, with a decrease in the mortality rate from 2.830% to 1.737%. Overall, the utilization of NB-IoT technology in this research provides a positive impact on livestock management, offering an automated solution that enhances efficiency and productivity in the agricultural sector.","PeriodicalId":503683,"journal":{"name":"Jurnal Informatika: Jurnal Pengembangan IT","volume":"111 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139335907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Klasifikasi Nasabah Potensial menggunakan Algoritma Ensemble Least Square Support Vector Machine dengan AdaBoost 使用集合最小平方支持向量机算法和 AdaBoost 进行潜在客户分类
Pub Date : 2023-09-20 DOI: 10.30591/jpit.v8i3.5675
Firman Aziz, Benny Leonard Enrico Panggabean
In the era of business and economics that are interconnected with each other and competition between companies in seeking market share so that there will be an increase, especially in the number of customers, especially deposit customers, financial institutions and other companies are increasingly realizing the importance of understanding and identifying potential customers correctly to get potential customers. customers subscribe to deposits. Potential customer classification is a strategic approach that allows financial institutions to identify potential customers who have the potential to subscribe to deposits. With a deeper understanding of the characteristics and needs of potential customers, financial institutions can direct marketing resources more effectively, increase marketing efforts, and increase the conversion of potential customers to active customers. The aim of this research is to develop and test the Ensemble Least Square Support Vector Machine model with AdaBoost in classifying potential customers which can increase accuracy in identifying potential customers who have the potential to subscribe to deposits. The research results showed that this method achieved an accuracy of 95.15%, a sensitivity of 92.93%, and a specificity of 97.61%. In comparison with single Support Vector Machine and Least Squares Support Vector Machine models, the Ensemble Least Squares Support Vector Machine outperforms both in terms of accuracy.
在商业和经济相互关联的时代,企业之间为寻求市场份额而展开竞争,从而增加客户数量,尤其是存款客户数量,金融机构和其他公司日益认识到正确理解和识别潜在客户以获得潜在客户存款的重要性。潜在客户分类是一种战略方法,可以让金融机构识别出有潜力认购存款的潜在客户。通过深入了解潜在客户的特征和需求,金融机构可以更有效地引导营销资源,加大营销力度,提高潜在客户向活跃客户的转化率。本研究的目的是开发并测试利用 AdaBoost 对潜在客户进行分类的集合最小平方支持向量机模型,以提高识别有潜力认购存款的潜在客户的准确性。研究结果表明,该方法的准确率为 95.15%,灵敏度为 92.93%,特异性为 97.61%。与单一支持向量机和最小二乘支持向量机相比,集合最小二乘支持向量机在准确性方面优于两者。
{"title":"Klasifikasi Nasabah Potensial menggunakan Algoritma Ensemble Least Square Support Vector Machine dengan AdaBoost","authors":"Firman Aziz, Benny Leonard Enrico Panggabean","doi":"10.30591/jpit.v8i3.5675","DOIUrl":"https://doi.org/10.30591/jpit.v8i3.5675","url":null,"abstract":"In the era of business and economics that are interconnected with each other and competition between companies in seeking market share so that there will be an increase, especially in the number of customers, especially deposit customers, financial institutions and other companies are increasingly realizing the importance of understanding and identifying potential customers correctly to get potential customers. customers subscribe to deposits. Potential customer classification is a strategic approach that allows financial institutions to identify potential customers who have the potential to subscribe to deposits. With a deeper understanding of the characteristics and needs of potential customers, financial institutions can direct marketing resources more effectively, increase marketing efforts, and increase the conversion of potential customers to active customers. The aim of this research is to develop and test the Ensemble Least Square Support Vector Machine model with AdaBoost in classifying potential customers which can increase accuracy in identifying potential customers who have the potential to subscribe to deposits. The research results showed that this method achieved an accuracy of 95.15%, a sensitivity of 92.93%, and a specificity of 97.61%. In comparison with single Support Vector Machine and Least Squares Support Vector Machine models, the Ensemble Least Squares Support Vector Machine outperforms both in terms of accuracy.","PeriodicalId":503683,"journal":{"name":"Jurnal Informatika: Jurnal Pengembangan IT","volume":"110 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139338242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Klasifikasi Penyakit Tanaman Bawang Merah Menggunakan Metode SVM dan CNN 使用 SVM 和 CNN 方法对红洋葱植物病害进行分类
Pub Date : 2023-09-19 DOI: 10.30591/jpit.v8i3.5341
Alya Zalvadila
Shallots are one of the most widely produced crops in Enrekang Regency. The obstacle in cultivation is the presence of disease in the plant which can reduce production yields. We can recognize this disease from the spots on the leaves because these spots have unique color and texture characteristics. The aim of this research is to determine the results of the classification of shallot plant diseases which focuses on purple spot and moler disease. The classification algorithms used are CNN and SVM with RBF, linear, sigmoid and polynomial kernels. The feature extraction method used is Gray Level Co-occurance Matrix (GLCM). The analysis was carried out using 320 datasets with 2 classes, namely, purple spot disease and moler disease, each class has 160 datasets. The test results show that the CNN and SVM methods with RBF, linear and polynomial kernels get accuracy, precision, recall and F1 scores of 100% respectively. Meanwhile, the SVM method on the sigmoid kernel using texture feature extraction with the GLCM method states that the accuracy value is 75%, precision 75%, recall 73% and F1-Score 74%. So these results state that the Sigmoid method using GLCM feature extraction has the lowest value among other methods
大葱是恩瑞康地区最广泛种植的作物之一。种植中的障碍是植物中存在病害,这会降低产量。我们可以从叶片上的病斑识别这种病害,因为这些病斑具有独特的颜色和纹理特征。本研究的目的是确定大葱植物病害的分类结果,重点是紫斑病和莫勒病。使用的分类算法是带有 RBF、线性、sigmoid 和多项式核的 CNN 和 SVM。使用的特征提取方法是灰度共存矩阵(GLCM)。分析使用了 320 个数据集,其中有 2 个类别,即紫斑病和莫勒病,每个类别有 160 个数据集。测试结果表明,采用 RBF、线性和多项式核的 CNN 和 SVM 方法的准确度、精确度、召回率和 F1 分数分别为 100%。同时,使用 GLCM 方法提取纹理特征的 sigmoid 核 SVM 方法的准确率为 75%,精确率为 75%,召回率为 73%,F1 分数为 74%。因此,这些结果表明,在其他方法中,使用 GLCM 特征提取的 Sigmoid 方法的准确度值最低。
{"title":"Klasifikasi Penyakit Tanaman Bawang Merah Menggunakan Metode SVM dan CNN","authors":"Alya Zalvadila","doi":"10.30591/jpit.v8i3.5341","DOIUrl":"https://doi.org/10.30591/jpit.v8i3.5341","url":null,"abstract":"Shallots are one of the most widely produced crops in Enrekang Regency. The obstacle in cultivation is the presence of disease in the plant which can reduce production yields. We can recognize this disease from the spots on the leaves because these spots have unique color and texture characteristics. The aim of this research is to determine the results of the classification of shallot plant diseases which focuses on purple spot and moler disease. The classification algorithms used are CNN and SVM with RBF, linear, sigmoid and polynomial kernels. The feature extraction method used is Gray Level Co-occurance Matrix (GLCM). The analysis was carried out using 320 datasets with 2 classes, namely, purple spot disease and moler disease, each class has 160 datasets. The test results show that the CNN and SVM methods with RBF, linear and polynomial kernels get accuracy, precision, recall and F1 scores of 100% respectively. Meanwhile, the SVM method on the sigmoid kernel using texture feature extraction with the GLCM method states that the accuracy value is 75%, precision 75%, recall 73% and F1-Score 74%. So these results state that the Sigmoid method using GLCM feature extraction has the lowest value among other methods","PeriodicalId":503683,"journal":{"name":"Jurnal Informatika: Jurnal Pengembangan IT","volume":"100 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139338701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualisasi Data Analisa Sentimen RUU Omnibus Law Kesehatan Menggunakan KNN dengan Software RapidMiner 利用 RapidMiner 软件的 KNN 对《综合法律卫生法案》的情感分析数据进行可视化分析
Pub Date : 2023-09-19 DOI: 10.30591/jpit.v8i3.5641
Tupari Tupari, Syaukani Abdullah, Chairani Chairani
The government's decision to discuss the RUU Omnibus law on health has become a controversial topic in society, especially among users of the Twitter social media platform. Users express their opinions regarding their stance on the RUU Omnibus law through tweets on Twitter. With diverse comments from users, it is essential to classify and visualize them into useful information about the positive and negative sentiments towards the RUU on health. This is crucial to understand the public's response to this policy. A total of 2406 sentiment data from Twitter users were collected using the RapidMiner software. Before analyzing the data using the K-Nearest Neighbors (KNN) algorithm, data preprocessing was carried out. After preprocessing, 2.406 data points were obtained, which were then divided into 1.684 tweets for testing and 722 tweets for training. The data was then processed using the KNN algorithm model executed in the RapidMiner software. The results of the data processing were presented in the form of tables, graphs, and word clouds, aligning with the research objective of providing clear and easily understandable visualizations about the RUU on health. This facilitates understanding for stakeholders without technical backgrounds to grasp the meaning and sentiments expressed. The research results indicate that the testing of K-Nearest Neighbors (KNN) yielded a high accuracy value, making it well-visualized at 84.58%. This indicates that the KNN model is highly successful in analyzing Twitter users' opinions on the Health Omnibus Law based on the data used and its ability to visualize effectively
政府决定讨论有关健康的 RUU 综合法已成为社会上的争议话题,尤其是在 Twitter 社交媒体平台的用户中。用户通过 Twitter 上的推文表达他们对 RUU Omnibus 法的立场观点。面对用户的各种评论,有必要对其进行分类,并将其可视化为有用的信息,说明用户对《健康条例》的积极和消极情绪。这对于了解公众对这一政策的反应至关重要。我们使用 RapidMiner 软件从 Twitter 用户那里收集了共计 2406 条情感数据。在使用 K-Nearest Neighbors(KNN)算法分析数据之前,对数据进行了预处理。经过预处理后,得到了 2.406 个数据点,然后将其分为 1.684 条测试推文和 722 条训练推文。然后使用 RapidMiner 软件中执行的 KNN 算法模型对数据进行处理。数据处理的结果以表格、图表和文字云的形式呈现,这与提供清晰易懂的有关健康的 RUU 的可视化研究目标相一致。这有助于没有技术背景的利益相关者理解所表达的含义和情感。研究结果表明,K-Nearest Neighbors(KNN)测试的准确率很高,达到 84.58%。这表明,基于所使用的数据及其有效可视化的能力,KNN 模型在分析 Twitter 用户对《卫生总括法》的意见方面非常成功。
{"title":"Visualisasi Data Analisa Sentimen RUU Omnibus Law Kesehatan Menggunakan KNN dengan Software RapidMiner","authors":"Tupari Tupari, Syaukani Abdullah, Chairani Chairani","doi":"10.30591/jpit.v8i3.5641","DOIUrl":"https://doi.org/10.30591/jpit.v8i3.5641","url":null,"abstract":"The government's decision to discuss the RUU Omnibus law on health has become a controversial topic in society, especially among users of the Twitter social media platform. Users express their opinions regarding their stance on the RUU Omnibus law through tweets on Twitter. With diverse comments from users, it is essential to classify and visualize them into useful information about the positive and negative sentiments towards the RUU on health. This is crucial to understand the public's response to this policy. A total of 2406 sentiment data from Twitter users were collected using the RapidMiner software. Before analyzing the data using the K-Nearest Neighbors (KNN) algorithm, data preprocessing was carried out. After preprocessing, 2.406 data points were obtained, which were then divided into 1.684 tweets for testing and 722 tweets for training. The data was then processed using the KNN algorithm model executed in the RapidMiner software. The results of the data processing were presented in the form of tables, graphs, and word clouds, aligning with the research objective of providing clear and easily understandable visualizations about the RUU on health. This facilitates understanding for stakeholders without technical backgrounds to grasp the meaning and sentiments expressed. The research results indicate that the testing of K-Nearest Neighbors (KNN) yielded a high accuracy value, making it well-visualized at 84.58%. This indicates that the KNN model is highly successful in analyzing Twitter users' opinions on the Health Omnibus Law based on the data used and its ability to visualize effectively","PeriodicalId":503683,"journal":{"name":"Jurnal Informatika: Jurnal Pengembangan IT","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139338938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Penerapan Data Mining Dalam Mengelompokkan Kunjungan Wisatawan Mancanegara Di Prov. Sulawesi Selatan Dengan K-Means Dan SVM 数据挖掘在南苏拉威西省外国游客访问聚类中的应用使用 K-Means 和 SVM 对南苏拉威西省的外国游客进行聚类
Pub Date : 2023-09-17 DOI: 10.30591/jpit.v8i3.4554
Nero Caesar Gosari, Rismayani Rismayani
Indonesia's exchange rate can rise due to foreign tourist visits, which can also benefit the local economy. The provincial capital. South Sulawesi is Makassar which is one of the locations for tourist visits. There are 11 main tourist attractions in Prov. South Sulawesi according to sulselprov 1) Maritime Tourism, 2) Losari Beach, 3) Rotterdam Fort, 4) Somba opu Fort, 5) Takabonerate Marine Park, 6) Bantimurung National Park, 7) Malino, 8) Tanjung Bira Beach, 9) Kesu Tourism, 10) Londa Tourism, 11) Pallawa Tourism. The purpose of this study is to analyze the application of data mining in classifying the number of foreign tourists visiting the prefecture. South Sulawesi uses k-means. The data used comes from BPS Prov. South Sulawesi. The data is grouped into two clusters. That is, the most tourists as C1 with results from Malaysia, and low tourist arrivals as C0 with results from Singapore, Japan, South Korea, Taiwan, China, India, the Philippines, Hong Kong, Thailand, Australia, USA, UK, Netherlands, Germany, France, Russia, Saudi Arabia, Egypt, United Arab Emirates, Pearl of the Persian Gulf, and Switzerland then I use and process this data again with SVM to look for precision, precision and recall values and get 100.00% accuracy in the RapidMiner application.
外国游客的到访会使印尼的汇率上升,这也会使当地经济受益。省会。南苏拉威西省的省会是望加锡(Makassar),它是游客到访的地点之一。根据 sulselprov 的统计,南苏拉威西省有 11 个主要旅游景点 1)1)海上旅游;2)Losari 海滩;3)鹿特丹要塞;4)Somba opu 要塞;5)Takabonerate 海洋公园;6)Bantimurung 国家公园;7)Malino;8)Tanjung Bira 海滩;9)Kesu 旅游;10)Londa 旅游;11)Pallawa 旅游。本研究的目的是分析数据挖掘在对访问该县的外国游客数量进行分类方面的应用。南苏拉威西省使用的是 K-均值法。所使用的数据来自南苏拉威西省的 BPS 省。数据被分为两个群组。即游客人数最多的为 C1,结果来自马来西亚;游客人数最少的为 C0,结果来自新加坡、日本、韩国、中国台湾、印度、菲律宾、中国香港、泰国、澳大利亚、美国、英国、荷兰、德国、法国、俄罗斯、沙特阿拉伯、埃及、阿拉伯联合酋长国、波斯湾明珠和瑞士。
{"title":"Penerapan Data Mining Dalam Mengelompokkan Kunjungan Wisatawan Mancanegara Di Prov. Sulawesi Selatan Dengan K-Means Dan SVM","authors":"Nero Caesar Gosari, Rismayani Rismayani","doi":"10.30591/jpit.v8i3.4554","DOIUrl":"https://doi.org/10.30591/jpit.v8i3.4554","url":null,"abstract":"Indonesia's exchange rate can rise due to foreign tourist visits, which can also benefit the local economy. The provincial capital. South Sulawesi is Makassar which is one of the locations for tourist visits. There are 11 main tourist attractions in Prov. South Sulawesi according to sulselprov 1) Maritime Tourism, 2) Losari Beach, 3) Rotterdam Fort, 4) Somba opu Fort, 5) Takabonerate Marine Park, 6) Bantimurung National Park, 7) Malino, 8) Tanjung Bira Beach, 9) Kesu Tourism, 10) Londa Tourism, 11) Pallawa Tourism. The purpose of this study is to analyze the application of data mining in classifying the number of foreign tourists visiting the prefecture. South Sulawesi uses k-means. The data used comes from BPS Prov. South Sulawesi. The data is grouped into two clusters. That is, the most tourists as C1 with results from Malaysia, and low tourist arrivals as C0 with results from Singapore, Japan, South Korea, Taiwan, China, India, the Philippines, Hong Kong, Thailand, Australia, USA, UK, Netherlands, Germany, France, Russia, Saudi Arabia, Egypt, United Arab Emirates, Pearl of the Persian Gulf, and Switzerland then I use and process this data again with SVM to look for precision, precision and recall values and get 100.00% accuracy in the RapidMiner application.","PeriodicalId":503683,"journal":{"name":"Jurnal Informatika: Jurnal Pengembangan IT","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139339330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deteksi Penyakit Tanaman Cabai Menggunakan Algoritma YOLOv5 Dengan Variasi Pembagian Data 使用 YOLOv5 算法检测辣椒植物病害与数据共享变化
Pub Date : 2023-09-17 DOI: 10.30591/jpit.v8i3.5679
Laurenza Setiana Riva, Jayanta Jayanta
Rapid technological developments have resulted in various innovative techniques that help humans, including object detection which functions to identify each element in an image. Object detection is often used to overcome problems that occur because of its ability to identify each element in the image. One of the problems that is often encountered is a decrease in agricultural income due to disease in chili plants. The maintenance of chili plants has various obstacles including the impact of weather which causes the development of diseases and pests so that chili production has decreased. By implementing the object detection, farmers can easily identify diseases that attack chili plants through pictures so that chili disease can be treated more quickly. This study uses the YOLOv5 algorithm to test the performance of the model in identifying diseases in chili plants. Pictures were taken using a cellphone camera with dimensions of 3472x3472 pixels. The amount of image data used is 430 data. Image data is divided into 3 parts, namely train data, validation data, and test data. To get the best model, this study also conducted three experiments with different distribution of data. Experiment 1 with a division of 70:20:10, experiment 2 with a division of 75:15:10, and experiment 3 with a division of 80:10:10. From the experiments carried out, the best results were obtained, namely in experiment 3 with an average value obtained in the test of 0.947 with a translation of the precision, recall, and mAP values, namely 0.946, 0.936, and 0.959 respectively.
技术的飞速发展催生了各种帮助人类的创新技术,其中包括物体检测技术,它的功能是识别图像中的每个元素。由于物体检测能够识别图像中的每个元素,因此经常被用来解决出现的问题。经常遇到的问题之一是辣椒植株生病导致农业收入减少。辣椒植株的维护存在各种障碍,包括天气影响导致病虫害的发生,从而使辣椒产量下降。通过对象检测,农民可以通过图片轻松识别侵害辣椒植株的病害,从而更快地治疗辣椒病害。本研究使用 YOLOv5 算法测试模型在识别辣椒植株病害方面的性能。图片使用手机摄像头拍摄,尺寸为 3472x3472 像素。使用的图像数据量为 430 个数据。图像数据分为 3 部分,即训练数据、验证数据和测试数据。为了获得最佳模型,本研究还进行了三次不同数据分布的实验。实验 1 的数据分配比例为 70:20:10,实验 2 的数据分配比例为 75:15:10,实验 3 的数据分配比例为 80:10:10。从实验结果来看,实验 3 的结果最好,测试的平均值为 0.947,精确度、召回率和 mAP 值分别为 0.946、0.936 和 0.959。
{"title":"Deteksi Penyakit Tanaman Cabai Menggunakan Algoritma YOLOv5 Dengan Variasi Pembagian Data","authors":"Laurenza Setiana Riva, Jayanta Jayanta","doi":"10.30591/jpit.v8i3.5679","DOIUrl":"https://doi.org/10.30591/jpit.v8i3.5679","url":null,"abstract":"Rapid technological developments have resulted in various innovative techniques that help humans, including object detection which functions to identify each element in an image. Object detection is often used to overcome problems that occur because of its ability to identify each element in the image. One of the problems that is often encountered is a decrease in agricultural income due to disease in chili plants. The maintenance of chili plants has various obstacles including the impact of weather which causes the development of diseases and pests so that chili production has decreased. By implementing the object detection, farmers can easily identify diseases that attack chili plants through pictures so that chili disease can be treated more quickly. This study uses the YOLOv5 algorithm to test the performance of the model in identifying diseases in chili plants. Pictures were taken using a cellphone camera with dimensions of 3472x3472 pixels. The amount of image data used is 430 data. Image data is divided into 3 parts, namely train data, validation data, and test data. To get the best model, this study also conducted three experiments with different distribution of data. Experiment 1 with a division of 70:20:10, experiment 2 with a division of 75:15:10, and experiment 3 with a division of 80:10:10. From the experiments carried out, the best results were obtained, namely in experiment 3 with an average value obtained in the test of 0.947 with a translation of the precision, recall, and mAP values, namely 0.946, 0.936, and 0.959 respectively.","PeriodicalId":503683,"journal":{"name":"Jurnal Informatika: Jurnal Pengembangan IT","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139339350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Jurnal Informatika: Jurnal Pengembangan IT
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1