Deteksi Penyakit Tanaman Cabai Menggunakan Algoritma YOLOv5 Dengan Variasi Pembagian Data

Laurenza Setiana Riva, Jayanta Jayanta
{"title":"Deteksi Penyakit Tanaman Cabai Menggunakan Algoritma YOLOv5 Dengan Variasi Pembagian Data","authors":"Laurenza Setiana Riva, Jayanta Jayanta","doi":"10.30591/jpit.v8i3.5679","DOIUrl":null,"url":null,"abstract":"Rapid technological developments have resulted in various innovative techniques that help humans, including object detection which functions to identify each element in an image. Object detection is often used to overcome problems that occur because of its ability to identify each element in the image. One of the problems that is often encountered is a decrease in agricultural income due to disease in chili plants. The maintenance of chili plants has various obstacles including the impact of weather which causes the development of diseases and pests so that chili production has decreased. By implementing the object detection, farmers can easily identify diseases that attack chili plants through pictures so that chili disease can be treated more quickly. This study uses the YOLOv5 algorithm to test the performance of the model in identifying diseases in chili plants. Pictures were taken using a cellphone camera with dimensions of 3472x3472 pixels. The amount of image data used is 430 data. Image data is divided into 3 parts, namely train data, validation data, and test data. To get the best model, this study also conducted three experiments with different distribution of data. Experiment 1 with a division of 70:20:10, experiment 2 with a division of 75:15:10, and experiment 3 with a division of 80:10:10. From the experiments carried out, the best results were obtained, namely in experiment 3 with an average value obtained in the test of 0.947 with a translation of the precision, recall, and mAP values, namely 0.946, 0.936, and 0.959 respectively.","PeriodicalId":503683,"journal":{"name":"Jurnal Informatika: Jurnal Pengembangan IT","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika: Jurnal Pengembangan IT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30591/jpit.v8i3.5679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid technological developments have resulted in various innovative techniques that help humans, including object detection which functions to identify each element in an image. Object detection is often used to overcome problems that occur because of its ability to identify each element in the image. One of the problems that is often encountered is a decrease in agricultural income due to disease in chili plants. The maintenance of chili plants has various obstacles including the impact of weather which causes the development of diseases and pests so that chili production has decreased. By implementing the object detection, farmers can easily identify diseases that attack chili plants through pictures so that chili disease can be treated more quickly. This study uses the YOLOv5 algorithm to test the performance of the model in identifying diseases in chili plants. Pictures were taken using a cellphone camera with dimensions of 3472x3472 pixels. The amount of image data used is 430 data. Image data is divided into 3 parts, namely train data, validation data, and test data. To get the best model, this study also conducted three experiments with different distribution of data. Experiment 1 with a division of 70:20:10, experiment 2 with a division of 75:15:10, and experiment 3 with a division of 80:10:10. From the experiments carried out, the best results were obtained, namely in experiment 3 with an average value obtained in the test of 0.947 with a translation of the precision, recall, and mAP values, namely 0.946, 0.936, and 0.959 respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 YOLOv5 算法检测辣椒植物病害与数据共享变化
技术的飞速发展催生了各种帮助人类的创新技术,其中包括物体检测技术,它的功能是识别图像中的每个元素。由于物体检测能够识别图像中的每个元素,因此经常被用来解决出现的问题。经常遇到的问题之一是辣椒植株生病导致农业收入减少。辣椒植株的维护存在各种障碍,包括天气影响导致病虫害的发生,从而使辣椒产量下降。通过对象检测,农民可以通过图片轻松识别侵害辣椒植株的病害,从而更快地治疗辣椒病害。本研究使用 YOLOv5 算法测试模型在识别辣椒植株病害方面的性能。图片使用手机摄像头拍摄,尺寸为 3472x3472 像素。使用的图像数据量为 430 个数据。图像数据分为 3 部分,即训练数据、验证数据和测试数据。为了获得最佳模型,本研究还进行了三次不同数据分布的实验。实验 1 的数据分配比例为 70:20:10,实验 2 的数据分配比例为 75:15:10,实验 3 的数据分配比例为 80:10:10。从实验结果来看,实验 3 的结果最好,测试的平均值为 0.947,精确度、召回率和 mAP 值分别为 0.946、0.936 和 0.959。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Teknologi Deteksi Dini Banjir Daerah Aliran Sungai menggunakan Heltec Wifi LoRa 32 V2 Sistem Diagnosa Penyakit Liver Menggunakan Metode Artificial Neural Network: Studi Berdasarkan Dataset Indian Liver Patient Dataset Rancang Bangun Aplikasi Diet untuk Ibu Menyusui Pasca Persalinan dengan Algoritma Mifflin-St Jeor Penyesuaian Model Ketahanan Siber Umkm Di Indonesia Dengan Nist Cybersecurity Framework Pemanfaatan Narrowband IoT (NB-IoT) dalam Peningkatan Produktivitas Peternakan melalui Monitoring Otomatis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1