EXTREME LEARNING MACHINE AND CHAOTIC BASED SPHYRAENA CHRYSOTAENIA OPTIMIZATION ALGORITHMS FOR LOSS LESSENING AND POWER STABILITY MAGNIFICATION

L. Kanagasabai
{"title":"EXTREME LEARNING MACHINE AND CHAOTIC BASED SPHYRAENA CHRYSOTAENIA OPTIMIZATION ALGORITHMS FOR LOSS LESSENING AND POWER STABILITY MAGNIFICATION","authors":"L. Kanagasabai","doi":"10.55766/sujst-2023-03-e0123","DOIUrl":null,"url":null,"abstract":"In this paper Extreme Learning Machine and Chaotic based Sphyraena Chrysotaenia Optimization Algorithms are applied for solving the Real Power loss lessening problem. Key objective of this work are Real power loss decreasing, power divergence restraining, and power constancy amplification. Extreme Learning machine and chaotic are integrated in the algorithm to obtain the better solutions. Candidate solutions in the projected Sphyraena Chrysotaenia optimization are Sphyraena Chrysotaenia and population in the inspection region is quixotically enthused. Spasmodically impressive solutions can be erroneous while restructuring the position of inspection agents and renewed positions may be inadequate one than the previous positions so magnificent selection is engaged. Domination comprises recurrence the self-effacing fitting solution to ensuing generation. In Extreme Learning Machine based Sphyraena Chrysotaenia Optimization Algorithm (ELMSC) initial phases of iteration, the Sphyraena Chrysotaenia Optimization Algorithm contestants are diversified in position and exponential standby generates unrestricted impulsive calculations which endow the rudiments to accommodate the entire revelation area. Compatibly, all over end stage of iterations, fundamentals are enclosed by Sphyraena Chrysotaenia Optimization Algorithm contestants and all an optimal condition with equivalent scheme. Chaotic sequences are combined into the Sphyraena Chrysotaenia Optimization Algorithm (CSCO). This amalgamation will augment the Exploration and Exploitation. Tinkerbell chaotic map fabricating tenets are employed. Proposed ELMSC and CSCO are corroborated in IEEE 30, 57, 118, 300, and 354 bus test systems. True power loss lessening, power divergence curtailing, and power constancy augmentation has been achieved. In future proposed ELMSC and CSCO can be applied to solve the others problems in Electrical engineering and also can be applied to resolve the problems in other engineering domains.","PeriodicalId":509211,"journal":{"name":"Suranaree Journal of Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suranaree Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55766/sujst-2023-03-e0123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper Extreme Learning Machine and Chaotic based Sphyraena Chrysotaenia Optimization Algorithms are applied for solving the Real Power loss lessening problem. Key objective of this work are Real power loss decreasing, power divergence restraining, and power constancy amplification. Extreme Learning machine and chaotic are integrated in the algorithm to obtain the better solutions. Candidate solutions in the projected Sphyraena Chrysotaenia optimization are Sphyraena Chrysotaenia and population in the inspection region is quixotically enthused. Spasmodically impressive solutions can be erroneous while restructuring the position of inspection agents and renewed positions may be inadequate one than the previous positions so magnificent selection is engaged. Domination comprises recurrence the self-effacing fitting solution to ensuing generation. In Extreme Learning Machine based Sphyraena Chrysotaenia Optimization Algorithm (ELMSC) initial phases of iteration, the Sphyraena Chrysotaenia Optimization Algorithm contestants are diversified in position and exponential standby generates unrestricted impulsive calculations which endow the rudiments to accommodate the entire revelation area. Compatibly, all over end stage of iterations, fundamentals are enclosed by Sphyraena Chrysotaenia Optimization Algorithm contestants and all an optimal condition with equivalent scheme. Chaotic sequences are combined into the Sphyraena Chrysotaenia Optimization Algorithm (CSCO). This amalgamation will augment the Exploration and Exploitation. Tinkerbell chaotic map fabricating tenets are employed. Proposed ELMSC and CSCO are corroborated in IEEE 30, 57, 118, 300, and 354 bus test systems. True power loss lessening, power divergence curtailing, and power constancy augmentation has been achieved. In future proposed ELMSC and CSCO can be applied to solve the others problems in Electrical engineering and also can be applied to resolve the problems in other engineering domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于极端学习机和混沌的 sphyraena chrysotaenia 优化算法,用于降低损耗和提高功率稳定性
本文应用极限学习机和基于混沌的 Sphyraena Chrysotaenia 优化算法来解决降低实际功率损耗问题。这项工作的主要目标是降低实际功率损耗、抑制功率发散和增强功率恒定性。为了获得更好的解决方案,算法中集成了极限学习机和混沌算法。在预测的Sphyraena Chrysotaenia优化中,候选解是Sphyraena Chrysotaenia,检查区域的种群是quixotically enhited。在调整检查代理的位置时,痉挛性的给人留下深刻印象的解决方案可能是错误的,更新的位置可能比以前的位置不足,因此要进行华丽的选择。主宰包括将自我贬低的合适解决方案复发到下一代。在基于极限学习机的蝶泳优化算法(ELMSC)的初始迭代阶段,蝶泳优化算法的参赛者在位置上是多样化的,指数备用产生不受限制的脉冲计算,它赋予了容纳整个启示区的雏形。与此相适应,在迭代的所有结束阶段,基本原理都被 Sphyraena Chrysotaenia 优化算法的参赛者所包围,并且都是具有等效方案的最佳状态。混沌序列被合并到 Sphyraena Chrysotaenia 优化算法(CSCO)中。这种合并将增强探索和开发能力。采用Tinkerbell混沌地图制作原理。拟议的 ELMSC 和 CSCO 在 IEEE 30、57、118、300 和 354 总线测试系统中得到证实。实现了真正的功率损耗降低、功率发散抑制和功率恒定增强。今后,提出的 ELMSC 和 CSCO 可用于解决电气工程中的其他问题,也可用于解决其他工程领域的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EXPLORING FACTORS AFFECTING NITROGEN ISOLATION BY CATION EXCHANGE MEMBRANE AND THEIR IMPLICATIONS FOR MICROBIAL FUEL CELL PERFORMANCE IN WASTEWATER TREATMENT COMPREHENSIVE DISCUSSION OF THE REPAIRABLE SINGLE SERVER CATASTROPHE AND MULTIPLE VACATION QUEUEING MODEL MODEL FORMULATION AND COMPUTATION FOR FACTORS INFLUENCING MYOCARDIAL INFARCTION IN HUMANS TO ANALYZE THE LUNGS X-RAY IMAGES USING MACHINE LEARNING ALGORITHM: AN IMPLEMENTATION TO PNEUMONIA DIAGNOSIS DECIPHERING THE INTRICATE NETWORK OF POLY CYSTIC OVARIAN SYNDROME: A THOROUGH EXAMINATION OF HORMONAL AND DEMOGRAPHIC INFLUENCES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1