{"title":"Prediction of Biochemical Oxygen Demand in Wastewater Treatment Plants Using Artificial Neural Network and Regression Analysis","authors":"Furkan Si̇dal, Y. Altun","doi":"10.21597/jist.1296789","DOIUrl":null,"url":null,"abstract":"Atık su arıtma tesislerinde, suyun kalitesini gösteren parametreleri takip edebilmek ve gerektiğinde müdahale edebilmek tesislerin yönetiminde önemli bir rol oynamaktadır. Atık su arıtma tesisleri yapılırken ve işletilirken, biyolojik oksijen ihtiyacı değerlerine gereksinim duyulmaktadır. Bu değerin ölçülmesi diğer parametrelere göre daha uzun sürelerde gerçekleşmekte ve deneylerin yapılması da zahmetli ve maliyetli olmaktadır. Bu tür zorlukların üstesinden gelmek için bazı yöntemler kullanılarak birçok çalışma yapılmaktadır. Bu çalışmada biyolojik oksijen değerinin, atık su arıtma tesislerinde kolayca ölçülebilen diğer parametreler aracılığıyla yapay sinir ağları ve çoklu regresyon analizi teknikleriyle tahmin edilmesi amaçlanmıştır. Çalışmada kullanılan ölçüm sonuçları 2021-2022 yılları arasında Van iline ait bir atık su arıtma tesisinde ölçülen verileri kapsamaktadır. Kullanılan tahmin girdi parametreleri pH, elektriksel iletkenlik, sıcaklık, çözünmüş oksijen, kimyasal oksijen ihtiyacı, askıda katı madde, toplam azot ve toplam fosfor değerleri bağımsız değişken ve biyolojik oksijen değeri ise bağımlı değişken olarak seçilmiştir. Çalışmada elde edilen bulgular ışığında biyolojik oksijen değerinin kolayca ölçülebilen parametreler yardımıyla ileri beslemeli yapay sinir ağları ve doğrusal çoklu regresyon analizi teknikleri ile oluşturulmuş olan modeller kullanılarak tahmin edilmesi mümkündür. Her iki model karşılaştırıldığında ise yapay sinir ağları ile geliştirilmiş olan modelin çoklu regresyon analizi ile geliştirilmiş olan modele göre daha iyi performans sergilediği tespit edilmiştir.","PeriodicalId":17353,"journal":{"name":"Journal of the Institute of Science and Technology","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21597/jist.1296789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Atık su arıtma tesislerinde, suyun kalitesini gösteren parametreleri takip edebilmek ve gerektiğinde müdahale edebilmek tesislerin yönetiminde önemli bir rol oynamaktadır. Atık su arıtma tesisleri yapılırken ve işletilirken, biyolojik oksijen ihtiyacı değerlerine gereksinim duyulmaktadır. Bu değerin ölçülmesi diğer parametrelere göre daha uzun sürelerde gerçekleşmekte ve deneylerin yapılması da zahmetli ve maliyetli olmaktadır. Bu tür zorlukların üstesinden gelmek için bazı yöntemler kullanılarak birçok çalışma yapılmaktadır. Bu çalışmada biyolojik oksijen değerinin, atık su arıtma tesislerinde kolayca ölçülebilen diğer parametreler aracılığıyla yapay sinir ağları ve çoklu regresyon analizi teknikleriyle tahmin edilmesi amaçlanmıştır. Çalışmada kullanılan ölçüm sonuçları 2021-2022 yılları arasında Van iline ait bir atık su arıtma tesisinde ölçülen verileri kapsamaktadır. Kullanılan tahmin girdi parametreleri pH, elektriksel iletkenlik, sıcaklık, çözünmüş oksijen, kimyasal oksijen ihtiyacı, askıda katı madde, toplam azot ve toplam fosfor değerleri bağımsız değişken ve biyolojik oksijen değeri ise bağımlı değişken olarak seçilmiştir. Çalışmada elde edilen bulgular ışığında biyolojik oksijen değerinin kolayca ölçülebilen parametreler yardımıyla ileri beslemeli yapay sinir ağları ve doğrusal çoklu regresyon analizi teknikleri ile oluşturulmuş olan modeller kullanılarak tahmin edilmesi mümkündür. Her iki model karşılaştırıldığında ise yapay sinir ağları ile geliştirilmiş olan modelin çoklu regresyon analizi ile geliştirilmiş olan modele göre daha iyi performans sergilediği tespit edilmiştir.