Nonsmooth Optimization Control Based on a Sandwich Model with Hysteresis for Piezo–Positioning Systems

Sen Yang, Yonghong Tan, Ruili Dong, Qingyuan Tan
{"title":"Nonsmooth Optimization Control Based on a Sandwich Model with Hysteresis for Piezo–Positioning Systems","authors":"Sen Yang, Yonghong Tan, Ruili Dong, Qingyuan Tan","doi":"10.34768/amcs-2023-0033","DOIUrl":null,"url":null,"abstract":"Abstract A nonsmooth optimization control (NOC) based on a sandwich model with hysteresis is proposed to control a micropositioning system (MPS) with a piezoelectric actuator (PEA). In this control scheme, the hysteresis phenomenon inherent in the PEA is described by a Duhem submodel embedded between two linear dynamic submodels that describe the behavior of the drive amplifier and the flexible hinge with load, respectively, thus constituting a sandwich model with hysteresis. Based on this model, a nonsmooth predictor for sandwich systems with hysteresis is constructed. To avoid the complicated online search for the optimal value of the generalized gradient at a nonsmooth point, the method of the so-called weighted estimation of generalized gradient is proposed. In order to compensate for the model error caused by model uncertainty, a model error compensator (MEC) is integrated into the online optimization control strategy. Afterwards, the stability of the control system is analyzed based on Lyapunov’s theory. Finally, the proposed NOC-MEC method is verified on an MPS with a PEA, and the corresponding experimental results are presented.","PeriodicalId":502322,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"22 1","pages":"449 - 461"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34768/amcs-2023-0033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A nonsmooth optimization control (NOC) based on a sandwich model with hysteresis is proposed to control a micropositioning system (MPS) with a piezoelectric actuator (PEA). In this control scheme, the hysteresis phenomenon inherent in the PEA is described by a Duhem submodel embedded between two linear dynamic submodels that describe the behavior of the drive amplifier and the flexible hinge with load, respectively, thus constituting a sandwich model with hysteresis. Based on this model, a nonsmooth predictor for sandwich systems with hysteresis is constructed. To avoid the complicated online search for the optimal value of the generalized gradient at a nonsmooth point, the method of the so-called weighted estimation of generalized gradient is proposed. In order to compensate for the model error caused by model uncertainty, a model error compensator (MEC) is integrated into the online optimization control strategy. Afterwards, the stability of the control system is analyzed based on Lyapunov’s theory. Finally, the proposed NOC-MEC method is verified on an MPS with a PEA, and the corresponding experimental results are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于带滞后的三明治模型的压电定位系统非平滑优化控制
摘要 本文提出了一种基于带有滞后的三明治模型的非平滑优化控制(NOC),用于控制带有压电致动器(PEA)的微定位系统(MPS)。在该控制方案中,压电致动器固有的滞后现象由嵌入两个线性动态子模型之间的 Duhem 子模型来描述,这两个子模型分别描述驱动放大器和柔性铰链在负载作用下的行为,从而构成一个带滞后的三明治模型。在此模型的基础上,构建了带滞后的三明治系统的非光滑预测器。为了避免在非光滑点在线搜索广义梯度最优值的复杂过程,提出了所谓的广义梯度加权估计方法。为了补偿模型不确定性造成的模型误差,在线优化控制策略中集成了模型误差补偿器(MEC)。随后,基于 Lyapunov 理论分析了控制系统的稳定性。最后,在带有 PEA 的 MPS 上验证了所提出的 NOC-MEC 方法,并给出了相应的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A multi-criteria approach for selecting an explanation from the set of counterfactuals produced by an ensemble of explainers Constant Q–Transform–Based Deep Learning Architecture for Detection of Obstructive Sleep Apnea Optimal Control Problems without Terminal Constraints: The Turnpike Property with Interior Decay Investigation of the Lombard Effect Based on a Machine Learning Approach On the Analysis of a Mathematical Model of CAR–T Cell Therapy for Glioblastoma: Insights from a Mathematical Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1