Recursive Bayesian Estimation Search with Environmental Constraints and Psychological Beliefs and Biases

Misty R. Hechinger, Steven C. Howell, Triet M. Le, Rickey P. Thomas
{"title":"Recursive Bayesian Estimation Search with Environmental Constraints and Psychological Beliefs and Biases","authors":"Misty R. Hechinger, Steven C. Howell, Triet M. Le, Rickey P. Thomas","doi":"10.1177/21695067231193666","DOIUrl":null,"url":null,"abstract":"In the paper, we consider a modification of the Recursive Bayesian Estimation technique and incorporate the Fast Sweeping Method to extend recent work in search applications with an algorithm capable of calculating optimal trajectories in the context of multiple targets and searchers. In addition to providing a computational overview of the algorithm, we demonstrate how incorporating knowledge, deception, and belief biases into the algorithm alters the optimal trajectories of the searchers. Finally, we present Monte-Carlo simulations of how these psychological factors influence the mean probability that the searchers detect the target. We will discuss the implications of the findings, current limitations and future extensions of the model, and potential applications to decision support.","PeriodicalId":20673,"journal":{"name":"Proceedings of the Human Factors and Ergonomics Society Annual Meeting","volume":"19 1","pages":"755 - 761"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Human Factors and Ergonomics Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/21695067231193666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the paper, we consider a modification of the Recursive Bayesian Estimation technique and incorporate the Fast Sweeping Method to extend recent work in search applications with an algorithm capable of calculating optimal trajectories in the context of multiple targets and searchers. In addition to providing a computational overview of the algorithm, we demonstrate how incorporating knowledge, deception, and belief biases into the algorithm alters the optimal trajectories of the searchers. Finally, we present Monte-Carlo simulations of how these psychological factors influence the mean probability that the searchers detect the target. We will discuss the implications of the findings, current limitations and future extensions of the model, and potential applications to decision support.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带环境约束和心理信念与偏差的递归贝叶斯估计搜索
在本文中,我们考虑了对递归贝叶斯估计技术的修改,并结合了快速扫描法,从而扩展了最近在搜索应用方面的工作,使算法能够在多个目标和搜索者的情况下计算最佳轨迹。除了提供算法的计算概述外,我们还演示了如何将知识、欺骗和信念偏差纳入算法,从而改变搜索者的最优轨迹。最后,我们展示了蒙特卡洛模拟,说明这些心理因素如何影响搜索者发现目标的平均概率。我们将讨论研究结果的意义、模型目前的局限性和未来的扩展,以及在决策支持方面的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Application of Non-linear Dynamics Investigating Cognitive Workload and Situational Trust in Highly Automated Vehicles Inattentional Insensitivity As A Predictor of Relevant Situation Awareness Questions And Irrelevant Questions Transitioning Lab Courses to Online Platforms by Higher Education Institutions during COVID-19 A Novel Application of Non-linear Dynamics Investigating Cognitive Workload and Situational Trust in Highly Automated Vehicles Transitioning Lab Courses to Online Platforms by Higher Education Institutions during COVID-19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1