Analysis of Underlap Tri-Gate FinFET and Its Capacitance Effects for Analog/Radio Frequency Applications

IF 0.6 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Nanoelectronics and Optoelectronics Pub Date : 2023-09-01 DOI:10.1166/jno.2023.3508
J. K. Kasthuri Bha, P. Aruna Priya
{"title":"Analysis of Underlap Tri-Gate FinFET and Its Capacitance Effects for Analog/Radio Frequency Applications","authors":"J. K. Kasthuri Bha, P. Aruna Priya","doi":"10.1166/jno.2023.3508","DOIUrl":null,"url":null,"abstract":"Manufacturing ultra-scaled FinFET devices has become a massive obstacle for device engineers. The critical challenge experienced Multi-Gate FETs is process variation; Consequently, devices’ performances are impacted and analyzed for device performance losses due to misalignments of gate locations close to sources and drain edgess (lower regions). FinFET is examined using a 3D mathematical model, the impact of base gate areas on variables such as electric fields, surface channel potentials, subthreshold oscillations, threshold voltages, and drainage-induced barrier reductions and effects beneath coating. 3D simulators validate the outcomes yielded by the model. The advantage of underlap FinFET of streamlining investigates the spacer dielectric material (low k and high k) and its underlapped Gate length using the TCAD simulator.","PeriodicalId":16446,"journal":{"name":"Journal of Nanoelectronics and Optoelectronics","volume":"212 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoelectronics and Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jno.2023.3508","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Manufacturing ultra-scaled FinFET devices has become a massive obstacle for device engineers. The critical challenge experienced Multi-Gate FETs is process variation; Consequently, devices’ performances are impacted and analyzed for device performance losses due to misalignments of gate locations close to sources and drain edgess (lower regions). FinFET is examined using a 3D mathematical model, the impact of base gate areas on variables such as electric fields, surface channel potentials, subthreshold oscillations, threshold voltages, and drainage-induced barrier reductions and effects beneath coating. 3D simulators validate the outcomes yielded by the model. The advantage of underlap FinFET of streamlining investigates the spacer dielectric material (low k and high k) and its underlapped Gate length using the TCAD simulator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分析用于模拟/无线电频率应用的底隙三栅极 FinFET 及其电容效应
制造超大规模 FinFET 器件已成为器件工程师面临的巨大障碍。多栅极场效应晶体管所面临的关键挑战是工艺变化;因此,器件的性能会受到影响,并分析由于靠近源极和漏极边缘(低区)的栅极位置错位而造成的器件性能损失。FinFET 采用三维数学模型,研究了基底栅极区域对电场、表面沟道电位、阈下振荡、阈值电压、漏极引起的势垒降低和涂层下的影响等变量的影响。三维模拟器验证了模型得出的结果。利用 TCAD 模拟器研究了流线型下重叠 FinFET 的优势,包括间隔介电材料(低 k 和高 k)及其下重叠栅极长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanoelectronics and Optoelectronics
Journal of Nanoelectronics and Optoelectronics 工程技术-工程:电子与电气
自引率
16.70%
发文量
48
审稿时长
12.5 months
期刊最新文献
Pulsed Optoelectronic Rangefinder and Its Measurement Applications in Architectural Design Rationality Assessment Electrochemical Micro-Reaction and Failure Mechanism of New Materials Used at Low Temperature in Coastal Environment Ultrawideband Tunable Polarization Converter Based on Metamaterials Nanofluid Heat Transfer and Flow Characteristics in a Convex Plate Heat Exchanger Based on Multi-Objective Optimization Characterization of ZnO/rGO Nanocomposite and Its Application for Photocatalytic Degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1